mirror of
				https://github.com/ggml-org/llama.cpp.git
				synced 2025-10-30 08:42:00 +00:00 
			
		
		
		
	Use fprintf for diagnostic output (#48)
keep printf only for printing model output one can now use ./main ... 2>dev/null to suppress any diagnostic output
This commit is contained in:
		
							
								
								
									
										92
									
								
								main.cpp
									
									
									
									
									
								
							
							
						
						
									
										92
									
								
								main.cpp
									
									
									
									
									
								
							| @@ -85,7 +85,7 @@ struct llama_model { | ||||
|  | ||||
| // load the model's weights from a file | ||||
| bool llama_model_load(const std::string & fname, llama_model & model, gpt_vocab & vocab, int n_ctx) { | ||||
|     printf("%s: loading model from '%s' - please wait ...\n", __func__, fname.c_str()); | ||||
|     fprintf(stderr, "%s: loading model from '%s' - please wait ...\n", __func__, fname.c_str()); | ||||
|  | ||||
|     std::vector<char> f_buf(1024*1024); | ||||
|  | ||||
| @@ -127,16 +127,16 @@ bool llama_model_load(const std::string & fname, llama_model & model, gpt_vocab | ||||
|         n_ff = ((2*(4*hparams.n_embd)/3 + hparams.n_mult - 1)/hparams.n_mult)*hparams.n_mult; | ||||
|         n_parts = LLAMA_N_PARTS.at(hparams.n_embd); | ||||
|  | ||||
|         printf("%s: n_vocab = %d\n", __func__, hparams.n_vocab); | ||||
|         printf("%s: n_ctx   = %d\n", __func__, hparams.n_ctx); | ||||
|         printf("%s: n_embd  = %d\n", __func__, hparams.n_embd); | ||||
|         printf("%s: n_mult  = %d\n", __func__, hparams.n_mult); | ||||
|         printf("%s: n_head  = %d\n", __func__, hparams.n_head); | ||||
|         printf("%s: n_layer = %d\n", __func__, hparams.n_layer); | ||||
|         printf("%s: n_rot   = %d\n", __func__, hparams.n_rot); | ||||
|         printf("%s: f16     = %d\n", __func__, hparams.f16); | ||||
|         printf("%s: n_ff    = %d\n", __func__, n_ff); | ||||
|         printf("%s: n_parts = %d\n", __func__, n_parts); | ||||
|         fprintf(stderr, "%s: n_vocab = %d\n", __func__, hparams.n_vocab); | ||||
|         fprintf(stderr, "%s: n_ctx   = %d\n", __func__, hparams.n_ctx); | ||||
|         fprintf(stderr, "%s: n_embd  = %d\n", __func__, hparams.n_embd); | ||||
|         fprintf(stderr, "%s: n_mult  = %d\n", __func__, hparams.n_mult); | ||||
|         fprintf(stderr, "%s: n_head  = %d\n", __func__, hparams.n_head); | ||||
|         fprintf(stderr, "%s: n_layer = %d\n", __func__, hparams.n_layer); | ||||
|         fprintf(stderr, "%s: n_rot   = %d\n", __func__, hparams.n_rot); | ||||
|         fprintf(stderr, "%s: f16     = %d\n", __func__, hparams.f16); | ||||
|         fprintf(stderr, "%s: n_ff    = %d\n", __func__, n_ff); | ||||
|         fprintf(stderr, "%s: n_parts = %d\n", __func__, n_parts); | ||||
|     } | ||||
|  | ||||
|     // load vocab | ||||
| @@ -161,7 +161,7 @@ bool llama_model_load(const std::string & fname, llama_model & model, gpt_vocab | ||||
|             vocab.id_to_token[i] = word; | ||||
|  | ||||
|             //if (i < 30000) { | ||||
|             //    printf("%s: vocab[%d] = '%s'\n", __func__, i, word.c_str()); | ||||
|             //    fprintf(stderr, "%s: vocab[%d] = '%s'\n", __func__, i, word.c_str()); | ||||
|             //} | ||||
|         } | ||||
|     } | ||||
| @@ -220,7 +220,7 @@ bool llama_model_load(const std::string & fname, llama_model & model, gpt_vocab | ||||
|  | ||||
|         ctx_size += (5 + 10*n_layer)*256; // object overhead | ||||
|  | ||||
|         printf("%s: ggml ctx size = %6.2f MB\n", __func__, ctx_size/(1024.0*1024.0)); | ||||
|         fprintf(stderr, "%s: ggml ctx size = %6.2f MB\n", __func__, ctx_size/(1024.0*1024.0)); | ||||
|     } | ||||
|  | ||||
|     // create the ggml context | ||||
| @@ -307,7 +307,7 @@ bool llama_model_load(const std::string & fname, llama_model & model, gpt_vocab | ||||
|  | ||||
|         const size_t memory_size = ggml_nbytes(model.memory_k) + ggml_nbytes(model.memory_v); | ||||
|  | ||||
|         printf("%s: memory_size = %8.2f MB, n_mem = %d\n", __func__, memory_size/1024.0/1024.0, n_mem); | ||||
|         fprintf(stderr, "%s: memory_size = %8.2f MB, n_mem = %d\n", __func__, memory_size/1024.0/1024.0, n_mem); | ||||
|     } | ||||
|  | ||||
|     const size_t file_offset = fin.tellg(); | ||||
| @@ -325,7 +325,7 @@ bool llama_model_load(const std::string & fname, llama_model & model, gpt_vocab | ||||
|             fname_part += "." + std::to_string(i); | ||||
|         } | ||||
|  | ||||
|         printf("%s: loading model part %d/%d from '%s'\n", __func__, i+1, n_parts, fname_part.c_str()); | ||||
|         fprintf(stderr, "%s: loading model part %d/%d from '%s'\n", __func__, i+1, n_parts, fname_part.c_str()); | ||||
|  | ||||
|         fin = std::ifstream(fname_part, std::ios::binary); | ||||
|         fin.rdbuf()->pubsetbuf(f_buf.data(), f_buf.size()); | ||||
| @@ -336,7 +336,7 @@ bool llama_model_load(const std::string & fname, llama_model & model, gpt_vocab | ||||
|             int n_tensors = 0; | ||||
|             size_t total_size = 0; | ||||
|  | ||||
|             printf("%s: ", __func__); | ||||
|             fprintf(stderr, "%s: ", __func__); | ||||
|  | ||||
|             while (true) { | ||||
|                 int32_t n_dims; | ||||
| @@ -436,7 +436,7 @@ bool llama_model_load(const std::string & fname, llama_model & model, gpt_vocab | ||||
|  | ||||
|                 if (0) { | ||||
|                     static const char * ftype_str[] = { "f32", "f16", "q4_0", "q4_1", }; | ||||
|                     printf("%24s - [%5d, %5d], type = %6s, split = %d\n", name.data(), ne[0], ne[1], ftype_str[ftype], split_type); | ||||
|                     fprintf(stderr, "%24s - [%5d, %5d], type = %6s, split = %d\n", name.data(), ne[0], ne[1], ftype_str[ftype], split_type); | ||||
|                 } | ||||
|  | ||||
|                 size_t bpe = 0; | ||||
| @@ -499,16 +499,16 @@ bool llama_model_load(const std::string & fname, llama_model & model, gpt_vocab | ||||
|                     total_size += ggml_nbytes(tensor)/n_parts; | ||||
|                 } | ||||
|  | ||||
|                 //printf("%42s - [%5d, %5d], type = %6s, %6.2f MB\n", name.data(), ne[0], ne[1], ftype == 0 ? "float" : "f16", ggml_nbytes(tensor)/1024.0/1024.0); | ||||
|                 //fprintf(stderr, "%42s - [%5d, %5d], type = %6s, %6.2f MB\n", name.data(), ne[0], ne[1], ftype == 0 ? "float" : "f16", ggml_nbytes(tensor)/1024.0/1024.0); | ||||
|                 if (++n_tensors % 8 == 0) { | ||||
|                     printf("."); | ||||
|                     fflush(stdout); | ||||
|                     fprintf(stderr, "."); | ||||
|                     fflush(stderr); | ||||
|                 } | ||||
|             } | ||||
|  | ||||
|             printf(" done\n"); | ||||
|             fprintf(stderr, " done\n"); | ||||
|  | ||||
|             printf("%s: model size = %8.2f MB / num tensors = %d\n", __func__, total_size/1024.0/1024.0, n_tensors); | ||||
|             fprintf(stderr, "%s: model size = %8.2f MB / num tensors = %d\n", __func__, total_size/1024.0/1024.0, n_tensors); | ||||
|         } | ||||
|  | ||||
|         fin.close(); | ||||
| @@ -552,7 +552,7 @@ bool llama_eval( | ||||
|  | ||||
|     if (mem_per_token > 0 && mem_per_token*N > buf_size) { | ||||
|         const size_t buf_size_new = 1.1*(mem_per_token*N); // add 10% to account for ggml object overhead | ||||
|         //printf("\n%s: reallocating buffer from %zu to %zu bytes\n", __func__, buf_size, buf_size_new); | ||||
|         //fprintf(stderr, "\n%s: reallocating buffer from %zu to %zu bytes\n", __func__, buf_size, buf_size_new); | ||||
|  | ||||
|         // reallocate | ||||
|         buf_size = buf_size_new; | ||||
| @@ -744,7 +744,7 @@ bool llama_eval( | ||||
|     if (mem_per_token == 0) { | ||||
|         mem_per_token = ggml_used_mem(ctx0)/N; | ||||
|     } | ||||
|     //printf("used_mem = %zu\n", ggml_used_mem(ctx0)); | ||||
|     //fprintf(stderr, "used_mem = %zu\n", ggml_used_mem(ctx0)); | ||||
|  | ||||
|     ggml_free(ctx0); | ||||
|  | ||||
| @@ -780,7 +780,7 @@ int main(int argc, char ** argv) { | ||||
|         params.seed = time(NULL); | ||||
|     } | ||||
|  | ||||
|     printf("%s: seed = %d\n", __func__, params.seed); | ||||
|     fprintf(stderr, "%s: seed = %d\n", __func__, params.seed); | ||||
|  | ||||
|     std::mt19937 rng(params.seed); | ||||
|     if (params.prompt.empty()) { | ||||
| @@ -822,13 +822,13 @@ int main(int argc, char ** argv) { | ||||
|     // tokenize the reverse prompt | ||||
|     std::vector<gpt_vocab::id> antiprompt_inp = ::llama_tokenize(vocab, params.antiprompt, false); | ||||
|  | ||||
|     printf("\n"); | ||||
|     printf("%s: prompt: '%s'\n", __func__, params.prompt.c_str()); | ||||
|     printf("%s: number of tokens in prompt = %zu\n", __func__, embd_inp.size()); | ||||
|     fprintf(stderr, "\n"); | ||||
|     fprintf(stderr, "%s: prompt: '%s'\n", __func__, params.prompt.c_str()); | ||||
|     fprintf(stderr, "%s: number of tokens in prompt = %zu\n", __func__, embd_inp.size()); | ||||
|     for (int i = 0; i < (int) embd_inp.size(); i++) { | ||||
|         printf("%6d -> '%s'\n", embd_inp[i], vocab.id_to_token.at(embd_inp[i]).c_str()); | ||||
|         fprintf(stderr, "%6d -> '%s'\n", embd_inp[i], vocab.id_to_token.at(embd_inp[i]).c_str()); | ||||
|     } | ||||
|     printf("\n"); | ||||
|     fprintf(stderr, "\n"); | ||||
|     if (params.interactive) { | ||||
| #if defined (__unix__) || (defined (__APPLE__) && defined (__MACH__)) | ||||
|         struct sigaction sigint_action; | ||||
| @@ -838,19 +838,19 @@ int main(int argc, char ** argv) { | ||||
|         sigaction(SIGINT, &sigint_action, NULL); | ||||
| #endif | ||||
|  | ||||
|         printf("%s: interactive mode on.\n", __func__); | ||||
|         fprintf(stderr, "%s: interactive mode on.\n", __func__); | ||||
|  | ||||
|         if(antiprompt_inp.size()) { | ||||
|             printf("%s: reverse prompt: '%s'\n", __func__, params.antiprompt.c_str()); | ||||
|             printf("%s: number of tokens in reverse prompt = %zu\n", __func__, antiprompt_inp.size()); | ||||
|             fprintf(stderr, "%s: reverse prompt: '%s'\n", __func__, params.antiprompt.c_str()); | ||||
|             fprintf(stderr, "%s: number of tokens in reverse prompt = %zu\n", __func__, antiprompt_inp.size()); | ||||
|             for (int i = 0; i < (int) antiprompt_inp.size(); i++) { | ||||
|                 printf("%6d -> '%s'\n", antiprompt_inp[i], vocab.id_to_token.at(antiprompt_inp[i]).c_str()); | ||||
|                 fprintf(stderr, "%6d -> '%s'\n", antiprompt_inp[i], vocab.id_to_token.at(antiprompt_inp[i]).c_str()); | ||||
|             } | ||||
|             printf("\n"); | ||||
|             fprintf(stderr, "\n"); | ||||
|         } | ||||
|     } | ||||
|     printf("sampling parameters: temp = %f, top_k = %d, top_p = %f, repeat_last_n = %i, repeat_penalty = %f\n", params.temp, params.top_k, params.top_p, params.repeat_last_n, params.repeat_penalty); | ||||
|     printf("\n\n"); | ||||
|     fprintf(stderr, "sampling parameters: temp = %f, top_k = %d, top_p = %f, repeat_last_n = %i, repeat_penalty = %f\n", params.temp, params.top_k, params.top_p, params.repeat_last_n, params.repeat_penalty); | ||||
|     fprintf(stderr, "\n\n"); | ||||
|  | ||||
|     std::vector<gpt_vocab::id> embd; | ||||
|  | ||||
| @@ -864,7 +864,7 @@ int main(int argc, char ** argv) { | ||||
|  | ||||
|  | ||||
|     if (params.interactive) { | ||||
|         printf("== Running in interactive mode. ==\n" | ||||
|         fprintf(stderr, "== Running in interactive mode. ==\n" | ||||
| #if defined (__unix__) || (defined (__APPLE__) && defined (__MACH__)) | ||||
|                " - Press Ctrl+C to interject at any time.\n" | ||||
| #endif | ||||
| @@ -892,7 +892,7 @@ int main(int argc, char ** argv) { | ||||
|             const int64_t t_start_us = ggml_time_us(); | ||||
|  | ||||
|             if (!llama_eval(model, params.n_threads, n_past, embd, logits, mem_per_token)) { | ||||
|                 printf("Failed to predict\n"); | ||||
|                 fprintf(stderr, "Failed to predict\n"); | ||||
|                 return 1; | ||||
|             } | ||||
|  | ||||
| @@ -1005,7 +1005,7 @@ int main(int argc, char ** argv) { | ||||
|  | ||||
|         // end of text token | ||||
|         if (embd.back() == 2) { | ||||
|             printf(" [end of text]\n"); | ||||
|             fprintf(stderr, " [end of text]\n"); | ||||
|             break; | ||||
|         } | ||||
|     } | ||||
| @@ -1015,12 +1015,12 @@ int main(int argc, char ** argv) { | ||||
|     { | ||||
|         const int64_t t_main_end_us = ggml_time_us(); | ||||
|  | ||||
|         printf("\n\n"); | ||||
|         printf("%s: mem per token = %8zu bytes\n", __func__, mem_per_token); | ||||
|         printf("%s:     load time = %8.2f ms\n", __func__, t_load_us/1000.0f); | ||||
|         printf("%s:   sample time = %8.2f ms\n", __func__, t_sample_us/1000.0f); | ||||
|         printf("%s:  predict time = %8.2f ms / %.2f ms per token\n", __func__, t_predict_us/1000.0f, t_predict_us/1000.0f/n_past); | ||||
|         printf("%s:    total time = %8.2f ms\n", __func__, (t_main_end_us - t_main_start_us)/1000.0f); | ||||
|         fprintf(stderr, "\n\n"); | ||||
|         fprintf(stderr, "%s: mem per token = %8zu bytes\n", __func__, mem_per_token); | ||||
|         fprintf(stderr, "%s:     load time = %8.2f ms\n", __func__, t_load_us/1000.0f); | ||||
|         fprintf(stderr, "%s:   sample time = %8.2f ms\n", __func__, t_sample_us/1000.0f); | ||||
|         fprintf(stderr, "%s:  predict time = %8.2f ms / %.2f ms per token\n", __func__, t_predict_us/1000.0f, t_predict_us/1000.0f/n_past); | ||||
|         fprintf(stderr, "%s:    total time = %8.2f ms\n", __func__, (t_main_end_us - t_main_start_us)/1000.0f); | ||||
|     } | ||||
|  | ||||
|     ggml_free(model.ctx); | ||||
|   | ||||
		Reference in New Issue
	
	Block a user
	 Pavol Rusnak
					Pavol Rusnak