mirror of
https://github.com/ggml-org/llama.cpp.git
synced 2025-10-27 08:21:30 +00:00
CUDA: Optimize rms_norm_f32 kernel and its fused variants, giving 1-6% perf E2E (#15715)
* Add fastdiv, use it in modulo and use modulo in rms_norm_f32 Fastdiv is much faster way to do integer division, which was identified as bottleneck in rms_norm_f32 * Support more `block_size` values in `rms_norm_f32` This makes us more flexible in selecting the optimal threads w.r.t paralellizing across a col vs. launch-overheads of threads and mio throttles * Update ggml/src/ggml-cuda/common.cuh Co-authored-by: Johannes Gäßler <johannesg@5d6.de> * Replace modulo with fastmodulo in `rms_norm_f32` * Use `BinPackArguments=true` for formating function calls Will file a separate PR to adjust .clang-format file * Update ggml/src/ggml-cuda/common.cuh Co-authored-by: Johannes Gäßler <johannesg@5d6.de> * Use uint3 for both `fastdiv` and `fastmodulo` The compiler seems to reliably optimize away the unused .z component in the fastdiv use-case, see https://godbolt.org/z/rx8KPrKr3 * More constrained type declarations Co-authored-by: Johannes Gäßler <johannesg@5d6.de> * Rename fastdiv and fastmodulo variables to shared variable name As suggest by JohannesGaessler, this increases clarity of the intended use * Pack fastdiv/fastmodulo constants into uint2/uint3 objects By packing constants to be used together into a struct, we are less likely to make errors. * Rename function parameter of fastmodulo `modulo_consts` is more fitting/descriptive --------- Co-authored-by: Johannes Gäßler <johannesg@5d6.de>
This commit is contained in:
@@ -563,6 +563,38 @@ static __device__ __forceinline__ float ggml_cuda_e8m0_to_fp32(uint8_t x) {
|
||||
#endif // CUDART_VERSION >= 12050
|
||||
}
|
||||
|
||||
// See https://gmplib.org/~tege/divcnst-pldi94.pdf figure 4.1.
|
||||
// Precompute mp (m' in the paper) and L such that division
|
||||
// can be computed using a multiply (high 32b of 64b result)
|
||||
// and a shift:
|
||||
//
|
||||
// n/d = (mulhi(n, mp) + n) >> L;
|
||||
static const uint3 init_fastdiv_values(uint32_t d) {
|
||||
// compute L = ceil(log2(d));
|
||||
uint32_t L = 0;
|
||||
while (L < 32 && (uint32_t{ 1 } << L) < d) {
|
||||
L++;
|
||||
}
|
||||
|
||||
uint32_t mp = (uint32_t) ((uint64_t{ 1 } << 32) * ((uint64_t{ 1 } << L) - d) / d + 1);
|
||||
// pack divisor as well to reduce error surface
|
||||
return make_uint3(mp, L, d);
|
||||
}
|
||||
|
||||
static __device__ __forceinline__ uint32_t fastdiv(uint32_t n, const uint3 fastdiv_values) {
|
||||
// expects fastdiv_values to contain <mp, L, divisor> in <x, y, z>
|
||||
// fastdiv_values.z is unused and optimized away by the compiler.
|
||||
// Compute high 32 bits of n * mp
|
||||
const uint32_t hi = __umulhi(n, fastdiv_values.x);
|
||||
// add n, apply bit shift
|
||||
return (hi + n) >> fastdiv_values.y;
|
||||
}
|
||||
|
||||
static __device__ __forceinline__ uint32_t fastmodulo(uint32_t n, const uint3 fastdiv_values) {
|
||||
// expects fastdiv_values to contain <mp, L, divisor> in <x, y, z> (see init_fastdiv_values)
|
||||
return n - fastdiv(n, fastdiv_values) * fastdiv_values.z;
|
||||
}
|
||||
|
||||
typedef void (*dequantize_kernel_t)(const void * vx, const int64_t ib, const int iqs, float2 & v);
|
||||
|
||||
static __device__ __forceinline__ float get_alibi_slope(
|
||||
|
||||
@@ -105,29 +105,29 @@ static __global__ void group_norm_f32(const float * x, float * dst, const int gr
|
||||
}
|
||||
|
||||
template <int block_size, bool do_multiply = false, bool do_add = false>
|
||||
static __global__ void rms_norm_f32(const float * x, float * dst,
|
||||
static __global__ void rms_norm_f32(const float * x,
|
||||
float * dst,
|
||||
const int ncols,
|
||||
const int64_t stride_row,
|
||||
const int64_t stride_channel,
|
||||
const int64_t stride_sample,
|
||||
const float eps,
|
||||
const float * mul = nullptr,
|
||||
const int64_t mul_stride_row = 0,
|
||||
const int64_t mul_stride_channel = 0,
|
||||
const int64_t mul_stride_sample = 0,
|
||||
const int mul_ncols = 0,
|
||||
const int mul_nrows = 0,
|
||||
const int mul_nchannels = 0,
|
||||
const int mul_nsamples = 0,
|
||||
const float * add = nullptr,
|
||||
const int64_t add_stride_row = 0,
|
||||
const int64_t add_stride_channel = 0,
|
||||
const int64_t add_stride_sample = 0,
|
||||
const int add_ncols = 0,
|
||||
const int add_nrows = 0,
|
||||
const int add_nchannels = 0,
|
||||
const int add_nsamples = 0) {
|
||||
|
||||
const float * mul = nullptr,
|
||||
const int64_t mul_stride_row = 0,
|
||||
const int64_t mul_stride_channel = 0,
|
||||
const int64_t mul_stride_sample = 0,
|
||||
const uint3 mul_ncols_packed = make_uint3(0, 0, 0),
|
||||
const uint3 mul_nrows_packed = make_uint3(0, 0, 0),
|
||||
const uint3 mul_nchannels_packed = make_uint3(0, 0, 0),
|
||||
const uint3 mul_nsamples_packed = make_uint3(0, 0, 0),
|
||||
const float * add = nullptr,
|
||||
const int64_t add_stride_row = 0,
|
||||
const int64_t add_stride_channel = 0,
|
||||
const int64_t add_stride_sample = 0,
|
||||
const uint3 add_ncols_packed = make_uint3(0, 0, 0),
|
||||
const uint3 add_nrows_packed = make_uint3(0, 0, 0),
|
||||
const uint3 add_nchannels_packed = make_uint3(0, 0, 0),
|
||||
const uint3 add_nsamples_packed = make_uint3(0, 0, 0)) {
|
||||
const int nrows = gridDim.x;
|
||||
const int nchannels = gridDim.y;
|
||||
|
||||
@@ -142,16 +142,16 @@ static __global__ void rms_norm_f32(const float * x, float * dst,
|
||||
dst += ((sample*nchannels + channel)*nrows + row)*ncols;
|
||||
|
||||
if constexpr (do_multiply) {
|
||||
const int mul_row = row % mul_nrows;
|
||||
const int mul_channel = channel % mul_nchannels;
|
||||
const int mul_sample = sample % mul_nsamples;
|
||||
mul += mul_sample*mul_stride_sample + mul_channel*mul_stride_channel + mul_row*mul_stride_row;
|
||||
const uint32_t mul_row = fastmodulo(row, mul_nrows_packed);
|
||||
const uint32_t mul_channel = fastmodulo(channel, mul_nchannels_packed);
|
||||
const uint32_t mul_sample = fastmodulo(sample, mul_nsamples_packed);
|
||||
mul += mul_sample * mul_stride_sample + mul_channel * mul_stride_channel + mul_row * mul_stride_row;
|
||||
}
|
||||
|
||||
if constexpr (do_add) {
|
||||
const int add_row = row % add_nrows;
|
||||
const int add_channel = channel % add_nchannels;
|
||||
const int add_sample = sample % add_nsamples;
|
||||
const int add_row = fastmodulo(row, add_nrows_packed);
|
||||
const int add_channel = fastmodulo(channel, add_nchannels_packed);
|
||||
const int add_sample = fastmodulo(sample, add_nsamples_packed);
|
||||
add += add_sample * add_stride_sample + add_channel * add_stride_channel + add_row * add_stride_row;
|
||||
}
|
||||
|
||||
@@ -165,15 +165,18 @@ static __global__ void rms_norm_f32(const float * x, float * dst,
|
||||
// sum up partial sums
|
||||
tmp = warp_reduce_sum(tmp);
|
||||
if constexpr (block_size > WARP_SIZE) {
|
||||
static_assert(block_size == 1024, "unexpected block_size");
|
||||
static_assert((block_size <= 1024) && (block_size % 32 == 0), "unexpected block_size");
|
||||
__shared__ float s_sum[32];
|
||||
const int warp_id = threadIdx.x / WARP_SIZE;
|
||||
const int lane_id = threadIdx.x % WARP_SIZE;
|
||||
const int warp_id = tid / WARP_SIZE;
|
||||
const int lane_id = tid % WARP_SIZE;
|
||||
if (lane_id == 0) {
|
||||
s_sum[warp_id] = tmp;
|
||||
}
|
||||
__syncthreads();
|
||||
tmp = s_sum[lane_id];
|
||||
tmp = 0.0f;
|
||||
if (lane_id < (block_size / WARP_SIZE)) {
|
||||
tmp = s_sum[lane_id];
|
||||
}
|
||||
tmp = warp_reduce_sum(tmp);
|
||||
}
|
||||
|
||||
@@ -182,12 +185,12 @@ static __global__ void rms_norm_f32(const float * x, float * dst,
|
||||
|
||||
for (int col = tid; col < ncols; col += block_size) {
|
||||
if constexpr (do_multiply && do_add) {
|
||||
const int mul_col = col % mul_ncols;
|
||||
const int add_col = col % add_ncols;
|
||||
dst[col] = scale * x[col] * mul[mul_col] + add[add_col];
|
||||
const int mul_col = fastmodulo(col, mul_ncols_packed);
|
||||
const int add_col = fastmodulo(col, add_ncols_packed);
|
||||
dst[col] = scale * x[col] * mul[mul_col] + add[add_col];
|
||||
} else if constexpr (do_multiply) {
|
||||
const int mul_col = col % mul_ncols;
|
||||
dst[col] = scale * x[col] * mul[mul_col];
|
||||
const int mul_col = fastmodulo(col, mul_ncols_packed);
|
||||
dst[col] = scale * x[col] * mul[mul_col];
|
||||
} else {
|
||||
dst[col] = scale * x[col];
|
||||
}
|
||||
@@ -354,77 +357,86 @@ static void rms_norm_f32_cuda(
|
||||
const int64_t stride_row, const int64_t stride_channel, const int64_t stride_sample, const float eps, cudaStream_t stream) {
|
||||
const dim3 blocks_num(nrows, nchannels, nsamples);
|
||||
if (ncols < 1024) {
|
||||
const dim3 block_dims(WARP_SIZE, 1, 1);
|
||||
rms_norm_f32<WARP_SIZE, false><<<blocks_num, block_dims, 0, stream>>>(x, dst, ncols, stride_row, stride_channel, stride_sample, eps);
|
||||
const dim3 block_dims(256, 1, 1);
|
||||
rms_norm_f32<256, false><<<blocks_num, block_dims, 0, stream>>>(x, dst, ncols, stride_row, stride_channel, stride_sample, eps);
|
||||
} else {
|
||||
const dim3 block_dims(1024, 1, 1);
|
||||
rms_norm_f32<1024, false><<<blocks_num, block_dims, 0, stream>>>(x, dst, ncols, stride_row, stride_channel, stride_sample, eps);
|
||||
}
|
||||
}
|
||||
|
||||
static void rms_norm_mul_f32_cuda(const float * x,
|
||||
const float * mul,
|
||||
const float * add,
|
||||
float * dst,
|
||||
const int ncols,
|
||||
const int nrows,
|
||||
const int nchannels,
|
||||
const int nsamples,
|
||||
const int64_t stride_row,
|
||||
const int64_t stride_channel,
|
||||
const int64_t stride_sample,
|
||||
const int64_t mul_stride_row,
|
||||
const int64_t mul_stride_channel,
|
||||
const int64_t mul_stride_sample,
|
||||
const int mul_ncols,
|
||||
const int mul_nrows,
|
||||
const int mul_nchannels,
|
||||
const int mul_nsamples,
|
||||
const int64_t add_stride_row,
|
||||
const int64_t add_stride_channel,
|
||||
const int64_t add_stride_sample,
|
||||
const int add_ncols,
|
||||
const int add_nrows,
|
||||
const int add_nchannels,
|
||||
const int add_nsamples,
|
||||
const float eps,
|
||||
cudaStream_t stream) {
|
||||
static void rms_norm_mul_f32_cuda(const float * x,
|
||||
const float * mul,
|
||||
const float * add,
|
||||
float * dst,
|
||||
const int ncols,
|
||||
const int nrows,
|
||||
const int nchannels,
|
||||
const int nsamples,
|
||||
const int64_t stride_row,
|
||||
const int64_t stride_channel,
|
||||
const int64_t stride_sample,
|
||||
const int64_t mul_stride_row,
|
||||
const int64_t mul_stride_channel,
|
||||
const int64_t mul_stride_sample,
|
||||
const uint32_t mul_ncols,
|
||||
const uint32_t mul_nrows,
|
||||
const uint32_t mul_nchannels,
|
||||
const uint32_t mul_nsamples,
|
||||
const int64_t add_stride_row,
|
||||
const int64_t add_stride_channel,
|
||||
const int64_t add_stride_sample,
|
||||
const uint32_t add_ncols,
|
||||
const uint32_t add_nrows,
|
||||
const uint32_t add_nchannels,
|
||||
const uint32_t add_nsamples,
|
||||
const float eps,
|
||||
cudaStream_t stream) {
|
||||
const dim3 blocks_num(nrows, nchannels, nsamples);
|
||||
if (mul == nullptr) {
|
||||
rms_norm_f32_cuda(x, dst, ncols, nrows, nchannels, nsamples, stride_row, stride_channel, stride_sample, eps, stream);
|
||||
return;
|
||||
}
|
||||
if (add == nullptr) {
|
||||
const uint3 mul_ncols_packed = init_fastdiv_values(mul_ncols);
|
||||
const uint3 mul_nrows_packed = init_fastdiv_values(mul_nrows);
|
||||
const uint3 mul_nchannels_packed = init_fastdiv_values(mul_nchannels);
|
||||
const uint3 mul_nsamples_packed = init_fastdiv_values(mul_nsamples);
|
||||
if (ncols < 1024) {
|
||||
const dim3 block_dims(WARP_SIZE, 1, 1);
|
||||
rms_norm_f32<WARP_SIZE, true><<<blocks_num, block_dims, 0, stream>>>(x, dst,
|
||||
ncols, stride_row, stride_channel, stride_sample, eps,
|
||||
mul, mul_stride_row, mul_stride_channel, mul_stride_sample,
|
||||
mul_ncols, mul_nrows, mul_nchannels, mul_nsamples);
|
||||
const dim3 block_dims(256, 1, 1);
|
||||
rms_norm_f32<256, true><<<blocks_num, block_dims, 0, stream>>>(
|
||||
x, dst, ncols, stride_row, stride_channel, stride_sample, eps, mul, mul_stride_row, mul_stride_channel,
|
||||
mul_stride_sample, mul_ncols_packed, mul_nrows_packed, mul_nchannels_packed, mul_nsamples_packed);
|
||||
} else {
|
||||
const dim3 block_dims(1024, 1, 1);
|
||||
rms_norm_f32<1024, true><<<blocks_num, block_dims, 0, stream>>>(x, dst,
|
||||
ncols, stride_row, stride_channel, stride_sample, eps,
|
||||
mul, mul_stride_row, mul_stride_channel, mul_stride_sample,
|
||||
mul_ncols, mul_nrows, mul_nchannels, mul_nsamples);
|
||||
rms_norm_f32<1024, true><<<blocks_num, block_dims, 0, stream>>>(
|
||||
x, dst, ncols, stride_row, stride_channel, stride_sample, eps, mul, mul_stride_row, mul_stride_channel,
|
||||
mul_stride_sample, mul_ncols_packed, mul_nrows_packed, mul_nchannels_packed, mul_nsamples_packed);
|
||||
}
|
||||
} else {
|
||||
const uint3 mul_ncols_packed = init_fastdiv_values(mul_ncols);
|
||||
const uint3 mul_nrows_packed = init_fastdiv_values(mul_nrows);
|
||||
const uint3 mul_nchannels_packed = init_fastdiv_values(mul_nchannels);
|
||||
const uint3 mul_nsamples_packed = init_fastdiv_values(mul_nsamples);
|
||||
|
||||
const uint3 add_ncols_packed = init_fastdiv_values(add_ncols);
|
||||
const uint3 add_nrows_packed = init_fastdiv_values(add_nrows);
|
||||
const uint3 add_nchannels_packed = init_fastdiv_values(add_nchannels);
|
||||
const uint3 add_nsamples_packed = init_fastdiv_values(add_nsamples);
|
||||
if (ncols < 1024) {
|
||||
const dim3 block_dims(WARP_SIZE, 1, 1);
|
||||
rms_norm_f32<WARP_SIZE, true, true><<<blocks_num, block_dims, 0, stream>>>(x, dst,
|
||||
ncols, stride_row, stride_channel, stride_sample, eps,
|
||||
mul, mul_stride_row, mul_stride_channel, mul_stride_sample,
|
||||
mul_ncols, mul_nrows, mul_nchannels, mul_nsamples,
|
||||
add, add_stride_row, add_stride_channel, add_stride_sample,
|
||||
add_ncols, add_nrows, add_nchannels, add_nsamples);
|
||||
const dim3 block_dims(256, 1, 1);
|
||||
rms_norm_f32<256, true, true><<<blocks_num, block_dims, 0, stream>>>(
|
||||
x, dst, ncols, stride_row, stride_channel, stride_sample, eps, mul, mul_stride_row, mul_stride_channel,
|
||||
mul_stride_sample, mul_ncols_packed, mul_nrows_packed, mul_nchannels_packed, mul_nsamples_packed, add,
|
||||
add_stride_row, add_stride_channel, add_stride_sample, add_ncols_packed, add_nrows_packed,
|
||||
add_nchannels_packed, add_nsamples_packed);
|
||||
} else {
|
||||
const dim3 block_dims(1024, 1, 1);
|
||||
rms_norm_f32<1024, true, true><<<blocks_num, block_dims, 0, stream>>>(x, dst,
|
||||
ncols, stride_row, stride_channel, stride_sample, eps,
|
||||
mul, mul_stride_row, mul_stride_channel, mul_stride_sample,
|
||||
mul_ncols, mul_nrows, mul_nchannels, mul_nsamples,
|
||||
add, add_stride_row, add_stride_channel, add_stride_sample,
|
||||
add_ncols, add_nrows, add_nchannels, add_nsamples);
|
||||
rms_norm_f32<1024, true, true><<<blocks_num, block_dims, 0, stream>>>(
|
||||
x, dst, ncols, stride_row, stride_channel, stride_sample, eps, mul, mul_stride_row, mul_stride_channel,
|
||||
mul_stride_sample, mul_ncols_packed, mul_nrows_packed, mul_nchannels_packed, mul_nsamples_packed, add,
|
||||
add_stride_row, add_stride_channel, add_stride_sample, add_ncols_packed, add_nrows_packed,
|
||||
add_nchannels_packed, add_nsamples_packed);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
Reference in New Issue
Block a user