CANN: Add L2_NORM op support (#16856)

* update L2_NORM op support

* update L2_NORM op support

* remove extra whitespace
This commit is contained in:
TecJesh
2025-11-12 15:11:42 +08:00
committed by GitHub
parent 5da7664960
commit 655cddd174
3 changed files with 57 additions and 0 deletions

View File

@@ -448,6 +448,35 @@ void ggml_cann_norm(ggml_backend_cann_context & ctx, ggml_tensor * dst) {
ggml_cann_release_resources(ctx, norm, acl_src, acl_dst);
}
void ggml_cann_l2_norm(ggml_backend_cann_context & ctx, ggml_tensor * dst) {
ggml_tensor * src = dst->src[0];
aclTensor * acl_src = ggml_cann_create_tensor(src);
aclTensor * acl_dst = ggml_cann_create_tensor(dst);
size_t type_size = ggml_type_size(src->type);
int64_t n_bytes = src->ne[3]* src->ne[2]* src->ne[1]* type_size;
ggml_cann_pool_alloc temp_buffer_allocator(ctx.pool(), n_bytes);
void * buffer = temp_buffer_allocator.get();
int64_t div_ne[] = {1, src->ne[1], src->ne[2], src->ne[3]};
size_t div_nb[GGML_MAX_DIMS];
div_nb[0] = sizeof(float);
for (int i = 1; i < GGML_MAX_DIMS; ++i) {
div_nb[i] = div_nb[i - 1] * div_ne[i - 1];
}
aclTensor * acl_div = ggml_cann_create_tensor(buffer, ACL_FLOAT, type_size, div_ne, div_nb, GGML_MAX_DIMS);
std::vector<int64_t> norm_dims = { 3 };
aclIntArray * dims_array = aclCreateIntArray(norm_dims.data(), norm_dims.size());
float p_value = 2.0f;
aclScalar * p_scalar = aclCreateScalar(&p_value, aclDataType::ACL_FLOAT);
GGML_CANN_CALL_ACLNN_OP(ctx, Norm, acl_src, p_scalar, dims_array, true, acl_div);
GGML_CANN_CALL_ACLNN_OP(ctx, Div, acl_src, acl_div, acl_dst);
ggml_cann_release_resources(ctx, dims_array, p_scalar, acl_src, acl_dst, acl_div);
}
void ggml_cann_group_norm(ggml_backend_cann_context & ctx, ggml_tensor * dst) {
ggml_tensor * src = dst->src[0];

View File

@@ -46,6 +46,7 @@
#include <aclnnop/aclnn_cos.h>
#include <aclnnop/aclnn_log.h>
#include <aclnnop/aclnn_sign.h>
#include <aclnnop/aclnn_norm.h>
#include "acl_tensor.h"
#include "common.h"
@@ -187,6 +188,29 @@ void ggml_cann_argsort(ggml_backend_cann_context & ctx, ggml_tensor * dst);
*/
void ggml_cann_norm(ggml_backend_cann_context & ctx, ggml_tensor * dst);
/**
* @brief Computes the L2 Normalization for a ggml tensor using the CANN
* backend.
*
* @details This function applies the L2 Normalization operation on the
* input tensor `src` and stores the result in the destination tensor
* `dst`. L2 Normalization scales the input tensor such that the
* L2 norm along the specified dimension equals 1. This operation
* is commonly used in neural networks for feature normalization
* and vector scaling.
* The operation is defined as:
* \f[
* \text{out} = \frac{x}{\sqrt{\sum{x^2}}}
* \f]
* The normalization is performed along the last dimension by default.
*
* @param ctx The CANN context used for operations.
* @param dst The destination tensor where the normalized values will be stored.
* @attention The normalization is performed along the last dimension of the
* input tensor by default.
*/
void ggml_cann_l2_norm(ggml_backend_cann_context & ctx, ggml_tensor * dst);
/**
* @brief Computes the Group Normalization for a ggml tensor using the CANN
* backend.

View File

@@ -1777,6 +1777,9 @@ static bool ggml_cann_compute_forward(ggml_backend_cann_context & ctx, struct gg
case GGML_OP_GROUP_NORM:
ggml_cann_group_norm(ctx, dst);
break;
case GGML_OP_L2_NORM:
ggml_cann_l2_norm(ctx, dst);
break;
case GGML_OP_CONCAT:
ggml_cann_concat(ctx, dst);
break;
@@ -2515,6 +2518,7 @@ static bool ggml_backend_cann_supports_op(ggml_backend_dev_t dev, const ggml_ten
// value of paddingW should be at most half of kernelW
return (p0 <= (k0 / 2)) && (p1 <= (k1 / 2));
}
case GGML_OP_L2_NORM:
case GGML_OP_DUP:
case GGML_OP_SUM:
case GGML_OP_IM2COL: