mirror of
https://github.com/ggml-org/llama.cpp.git
synced 2025-10-27 08:21:30 +00:00
Add experimental ggml-hexagon backend for the Hexagon NPU (#16547)
* model: add support for extra bufs for all devices * hexagon: add experimental ggml-hexagon backend for the Hexagon NPU This commit introduces a new experimental backend `ggml-hexagon` with support for the Hexagon NPU. Highlights: - Supports Hexagon versions: v73, v75, v79, and v81 - Targets Android devices based on Snapdragon SoCs: Gen3, 8-Elite, and 8-Elite Gen5 - Supports Q4_0, Q8_0, MXFP4, and FP32 data types - Implements core LLM ops: MUL_MAT/MUL_MAT_ID, ADD/SUB/MUL/ADD_ID, RMS_NORM, ROPE, GLU/SWIGLU, SOFTMAX **Note:** This backend is experimental and may exhibit instability or limited performance across supported devices. It is intended for early testing and feedback from llama.cpp/ggml developer and user community. Co-Authored-By: Rajdeep Ganguly <rganguly@qti.qualcomm.com> Co-Authored-By: Todor Boinovski <todorb@qti.qualcomm.com> * hexagon: fix format checker errors * hexagon: update readme and cmake presets * ci: add android-ndk-build jobs that build plain ARM64 and Snapdragon versions * hexagon: add simple graph optimizer for stacking MUL_MAT ops with the same input * hexagon: move ADB helper scripts into scripts/snapdragon/adb * hexagon: replace all f/printfs with GGML_LOG_... * readme: add hexagon to the list supported backends * hexagon: stack malmuts with quantized inputs only * hexagon: add TODO for fixing issues in hexagon_graph_optimize * hexagon: update to hex-sdk 6.4.0 and add scripts for running on QDC * scripts: fix lint errors * scripts: update qdc pytest script to make linter happy * hexagon: add reduce sum in fp32 * hexagon: reduce number of vector stores in matmul output * hexagon: remove the need for vdelta in reduce-multiply-x8 * hexagon: consistent use of reduce_sum_fp32 for row_sums * hexagon: some more matmul optimizations and comments Optimize cases where tensor dims are not multiple of 1024 (e.g in Qwen models). We've handled those cases already but at a higher overhead. * hexagon: update cmake presets * hexagon: add OPMASK support for run-bench.sh wrapper * hexagon: update to use GGML_BACKEND_API * hexagon: remove unused logic for setting tensor flags for the views * hexagon: add asserts to set/get_tensor to make sure we handle complete tensors Same asserts as the CPU backend. * hexagon: use cpy_tensor slow path for non-host buffers * hexagon: error checks in the buffer allocator * cmake: move include(extProj) under ggml-hexagon * hexagon: don't forget to delete the backend on free * hexagon: set/get_tensor size assert apply only to quantized tensors * hexagon: reintroduce HEX_VERBOSE wrapper for GGML_LOG_DEBUG for now GGML_LOG_DEBUG is always enabled for test-backend-ops and the output gets in the way. Ideally we need a bit more finer log levels. * docs: typos in hexagon developer docs (libggm-...) * hexagon: overhaul error handling in the session/device allocation this should handle all failure paths in the session allocation. * hexagon: update cmake presets to enable fp16 vectors * hexagon: remove unused time_usec function * hexagon: don't forget to release buffer contexts * hexagon: fixed indents in hvx-utils (missed clang-format auto-format failure) * hexagon: remove custom can_repeat function and use ggml_can_repeat --------- Co-authored-by: Rajdeep Ganguly <rganguly@qti.qualcomm.com> Co-authored-by: Todor Boinovski <todorb@qti.qualcomm.com>
This commit is contained in:
49
docs/backend/hexagon/CMakeUserPresets.json
Normal file
49
docs/backend/hexagon/CMakeUserPresets.json
Normal file
@@ -0,0 +1,49 @@
|
||||
{
|
||||
"version": 4,
|
||||
"configurePresets": [
|
||||
{
|
||||
"name": "arm64-android-snapdragon",
|
||||
"hidden": true,
|
||||
"architecture": { "value": "arm64", "strategy": "external" },
|
||||
"toolset": { "value": "host=x86_64", "strategy": "external" },
|
||||
"cacheVariables": {
|
||||
"ANDROID_ABI": "arm64-v8a",
|
||||
"ANDROID_PLATFORM": "android-31",
|
||||
"CMAKE_TOOLCHAIN_FILE": "$env{ANDROID_NDK_ROOT}/build/cmake/android.toolchain.cmake",
|
||||
"CMAKE_C_FLAGS": "-march=armv8.7a+fp16 -fvectorize -ffp-model=fast -fno-finite-math-only -flto -D_GNU_SOURCE",
|
||||
"CMAKE_CXX_FLAGS": "-march=armv8.7a+fp16 -fvectorize -ffp-model=fast -fno-finite-math-only -flto -D_GNU_SOURCE",
|
||||
"CMAKE_C_FLAGS_RELEASE": "-O3 -DNDEBUG",
|
||||
"CMAKE_CXX_FLAGS_RELEASE": "-O3 -DNDEBUG",
|
||||
"CMAKE_C_FLAGS_RELWITHDEBINFO": "-O3 -DNDEBUG -g",
|
||||
"CMAKE_CXX_FLAGS_RELWITHDEBINFO": "-O3 -DNDEBUG -g",
|
||||
"HEXAGON_SDK_ROOT": "$env{HEXAGON_SDK_ROOT}",
|
||||
"PREBUILT_LIB_DIR": "android_aarch64",
|
||||
"GGML_OPENMP": "OFF",
|
||||
"GGML_LLAMAFILE": "OFF",
|
||||
"GGML_OPENCL": "ON",
|
||||
"GGML_HEXAGON": "ON",
|
||||
"LLAMA_CURL": "OFF"
|
||||
}
|
||||
},
|
||||
|
||||
{
|
||||
"name": "arm64-windows-snapdragon",
|
||||
"inherits": [ "base", "arm64-windows-llvm" ],
|
||||
"cacheVariables": {
|
||||
"HEXAGON_SDK_ROOT": "$env{HEXAGON_SDK_ROOT}",
|
||||
"PREBUILT_LIB_DIR": "windows_aarch64",
|
||||
"GGML_OPENMP": "OFF",
|
||||
"GGML_LLAMAFILE": "OFF",
|
||||
"GGML_OPENCL": "ON",
|
||||
"GGML_HEXAGON": "ON",
|
||||
"LLAMA_CURL": "OFF"
|
||||
}
|
||||
},
|
||||
|
||||
{ "name": "arm64-android-snapdragon-debug" , "inherits": [ "base", "arm64-android-snapdragon", "debug" ] },
|
||||
{ "name": "arm64-android-snapdragon-release", "inherits": [ "base", "arm64-android-snapdragon", "release" ] },
|
||||
|
||||
{ "name": "arm64-windows-snapdragon-debug" , "inherits": [ "base", "arm64-windows-snapdragon", "debug" ] },
|
||||
{ "name": "arm64-windows-snapdragon-release", "inherits": [ "base", "arm64-windows-snapdragon", "release" ] }
|
||||
]
|
||||
}
|
||||
239
docs/backend/hexagon/README.md
Normal file
239
docs/backend/hexagon/README.md
Normal file
@@ -0,0 +1,239 @@
|
||||
# Snapdragon-based Android devices
|
||||
|
||||
## How to Build
|
||||
|
||||
The easiest way to build llama.cpp for a Snapdragon-based Android device is using the toolchain Docker image (see github.com/snapdragon-toolchain).
|
||||
This image includes Android NDK, OpenCL SDK, Hexagon SDK, CMake, etc.
|
||||
|
||||
This method works on Linux, macOS, and Windows. macOS and Windows users should install Docker Desktop.
|
||||
|
||||
```
|
||||
~/src/llama.cpp$ docker run -it -u $(id -u):$(id -g) --volume $(pwd):/workspace --platform linux/amd64 ghcr.io/snapdragon-toolchain/arm64-android:v0.3
|
||||
[d]/> cd /workspace
|
||||
```
|
||||
|
||||
The rest of the Android build process assumes that you're running inside the toolchain container.
|
||||
Let's build llama.cpp with CPU, OpenCL, and Hexagon backends via CMake presets:
|
||||
|
||||
```
|
||||
[d]/workspace> cp docs/backend/hexagon/CMakeUserPresets.json .
|
||||
|
||||
[d]/workspace> cmake --preset arm64-android-snapdragon-release -B build-snapdragon
|
||||
Preset CMake variables:
|
||||
ANDROID_ABI="arm64-v8a"
|
||||
...
|
||||
CMAKE_TOOLCHAIN_FILE="/opt/android-ndk-r28b/build/cmake/android.toolchain.cmake"
|
||||
GGML_HEXAGON="ON"
|
||||
GGML_OPENCL="ON"
|
||||
GGML_OPENMP="OFF"
|
||||
HEXAGON_SDK_ROOT="/opt/hexagon/6.4.0.2"
|
||||
...
|
||||
-- Including OpenCL backend
|
||||
-- Including Hexagon backend
|
||||
...
|
||||
-- Build files have been written to: /workspace/build-snapdragon
|
||||
|
||||
[d]/workspace> cmake --build build-snapdragon
|
||||
...
|
||||
[144/356] Performing build step for 'htp-v73'
|
||||
[1/16] Generating htp_iface_skel.c, htp_iface_stub.c, htp_iface.h
|
||||
[2/16] Building C object CMakeFiles/ggml-htp-v73.dir/hvx-sigmoid.c.obj
|
||||
[3/16] Building C object CMakeFiles/ggml-htp-v73.dir/htp-dma.c.obj
|
||||
[4/16] Building C object CMakeFiles/ggml-htp-v73.dir/worker-pool.c.obj
|
||||
...
|
||||
-- Installing: /workspace/build-snapdragon/ggml/src/ggml-hexagon/libggml-htp-v73.so
|
||||
-- Installing: /workspace/build-snapdragon/ggml/src/ggml-hexagon/libggml-htp-v75.so
|
||||
...
|
||||
```
|
||||
|
||||
To generate an installable "package" simply use cmake --install:
|
||||
|
||||
```
|
||||
[d]/workspace> cmake --install build-snapdragon --prefix pkg-adb/llama.cpp
|
||||
-- Install configuration: "Release"
|
||||
-- Installing: /workspace/pkg-adb/llama.cpp/lib/libggml-cpu.so
|
||||
-- Installing: /workspace/pkg-adb/llama.cpp/lib/libggml-opencl.so
|
||||
-- Installing: /workspace/pkg-adb/llama.cpp/lib/libggml-hexagon.so
|
||||
-- Installing: /workspace/pkg-adb/llama.cpp/lib/libggml-htp-v73.so
|
||||
-- Installing: /workspace/pkg-adb/llama.cpp/lib/libggml-htp-v75.so
|
||||
-- Installing: /workspace/pkg-adb/llama.cpp/lib/libggml-htp-v79.so
|
||||
-- Installing: /workspace/pkg-adb/llama.cpp/lib/libggml-htp-v81.so
|
||||
-- Installing: /workspace/pkg-adb/llama.cpp/lib/libggml.so
|
||||
...
|
||||
-- Installing: /workspace/pkg-adb/llama.cpp/bin/llama-bench
|
||||
-- Installing: /workspace/pkg-adb/llama.cpp/bin/llama-cli
|
||||
...
|
||||
```
|
||||
|
||||
## How to Install
|
||||
|
||||
For this step, your device needs to be configured for on-device development.
|
||||
Please see https://developer.android.com/studio/debug/dev-options for details.
|
||||
|
||||
Once ADB is enabled, use `adb push` to install `pkg-snapdragon` on the device.
|
||||
**Note that the toolchain Docker image doesn't have ADB and doesn't set up the ADB bridge. Please use native ADB on the host.**
|
||||
|
||||
```
|
||||
~/src/llama.cpp$ adb push pkg-adb/llama.cpp /data/local/tmp/
|
||||
pkg-adb/llama.cpp/bin/: 67 files pushed, 0 skipped. 190.2 MB/s (919095042 bytes in 4.607s)
|
||||
pkg-adb/llama.cpp/include/: 19 files pushed, 0 skipped. 20.5 MB/s (255173 bytes in 0.012s)
|
||||
pkg-adb/llama.cpp/lib/: 16 files pushed, 0 skipped. 144.4 MB/s (43801382 bytes in 0.289s)
|
||||
102 files pushed, 0 skipped. 186.9 MB/s (963151597 bytes in 4.914s)
|
||||
```
|
||||
|
||||
At this point, you should also install some models:
|
||||
|
||||
```
|
||||
~/src/llama.cpp$ wget https://huggingface.co/bartowski/Llama-3.2-1B-Instruct-GGUF/resolve/main/Llama-3.2-1B-Instruct-Q4_0.gguf
|
||||
...
|
||||
2025-10-11 12:04:52 (10.7 MB/s) - ‘Llama-3.2-1B-Instruct-Q4_0.gguf’ saved [773025920/773025920]
|
||||
|
||||
~/src/llama.cpp$ adb push Llama-3.2-1B-Instruct-Q4_0.gguf /data/local/tmp/gguf
|
||||
Llama-3.2-1B-Instruct-Q4_0.gguf: 1 file pushed, 0 skipped. 38.3 MB/s (773025920 bytes in 19.250s)
|
||||
```
|
||||
|
||||
## How to Run
|
||||
|
||||
The easiest way to run llama.cpp cli tools is using provided wrapper scripts that properly set up all required environment variables.
|
||||
|
||||
llama.cpp supports three backends on Snapdragon-based devices: CPU, Adreno GPU (GPUOpenCL), and Hexagon NPU (HTP0-4).
|
||||
You can select which backend to run the model on using the `D=` variable, which maps to the `--device` option.
|
||||
|
||||
Hexagon NPU behaves as a "GPU" device when it comes to `-ngl` and other offload-related options.
|
||||
|
||||
Here are some examples of running various llama.cpp tools via ADB.
|
||||
|
||||
Simple question for Llama-3.2-1B
|
||||
|
||||
```
|
||||
~/src/llama.cpp$ M=Llama-3.2-1B-Instruct-Q4_0.gguf D=HTP0 ./scripts/snapdragon/adb/run-cli.sh -no-cnv -p "what is the most popular cookie in the world?"
|
||||
...
|
||||
ggml-hex: Hexagon backend (experimental) : allocating new registry : ndev 1
|
||||
ggml-hex: Hexagon Arch version v79
|
||||
ggml-hex: allocating new session: HTP0
|
||||
ggml-hex: new session: HTP0 : session-id 0 domain-id 3 uri file:///libggml-htp-v79.so?htp_iface_skel_handle_invoke&_modver=1.0&_dom=cdsp&_session=0 handle 0xb4000072c7955e50
|
||||
...
|
||||
load_tensors: offloading output layer to GPU
|
||||
load_tensors: offloaded 17/17 layers to GPU
|
||||
load_tensors: CPU model buffer size = 225.49 MiB
|
||||
load_tensors: HTP0 model buffer size = 0.26 MiB
|
||||
load_tensors: HTP0-REPACK model buffer size = 504.00 MiB
|
||||
...
|
||||
I hope this helps you understand the world's most popular cookies! [end of text]
|
||||
...
|
||||
llama_perf_sampler_print: sampling time = 30.08 ms / 487 runs ( 0.06 ms per token, 16191.77 tokens per second)
|
||||
llama_perf_context_print: load time = 617.94 ms
|
||||
llama_perf_context_print: prompt eval time = 80.76 ms / 11 tokens ( 7.34 ms per token, 136.21 tokens per second)
|
||||
llama_perf_context_print: eval time = 9210.59 ms / 475 runs ( 19.39 ms per token, 51.57 tokens per second)
|
||||
llama_perf_context_print: total time = 9454.92 ms / 486 tokens
|
||||
llama_perf_context_print: graphs reused = 473
|
||||
llama_memory_breakdown_print: | memory breakdown [MiB] | total free self model context compute unaccounted |
|
||||
llama_memory_breakdown_print: | - HTP0 (Hexagon) | 2048 = 2048 + ( 0 = 0 + 0 + 0) + 0 |
|
||||
llama_memory_breakdown_print: | - Host | 439 = 225 + 136 + 77 |
|
||||
llama_memory_breakdown_print: | - HTP0-REPACK | 504 = 504 + 0 + 0 |
|
||||
```
|
||||
|
||||
Summary request for OLMoE-1B-7B. This is a large model that requires two HTP sessions/devices
|
||||
|
||||
```
|
||||
~/src/llama.cpp$ M=OLMoE-1B-7B-0125-Instruct-Q4_0.gguf NDEV=2 D=HTP0,HTP1 ./scripts/snapdragon/adb/run-cli.sh -f surfing.txt -no-cnv
|
||||
...
|
||||
ggml-hex: Hexagon backend (experimental) : allocating new registry : ndev 1
|
||||
ggml-hex: Hexagon Arch version v81
|
||||
ggml-hex: allocating new session: HTP0
|
||||
ggml-hex: allocating new session: HTP1
|
||||
...
|
||||
load_tensors: offloading output layer to GPU
|
||||
load_tensors: offloaded 17/17 layers to GPU
|
||||
load_tensors: CPU model buffer size = 143.86 MiB
|
||||
load_tensors: HTP1 model buffer size = 0.23 MiB
|
||||
load_tensors: HTP1-REPACK model buffer size = 1575.00 MiB
|
||||
load_tensors: HTP0 model buffer size = 0.28 MiB
|
||||
load_tensors: HTP0-REPACK model buffer size = 2025.00 MiB
|
||||
...
|
||||
llama_context: CPU output buffer size = 0.19 MiB
|
||||
llama_kv_cache: HTP1 KV buffer size = 238.00 MiB
|
||||
llama_kv_cache: HTP0 KV buffer size = 306.00 MiB
|
||||
llama_kv_cache: size = 544.00 MiB ( 8192 cells, 16 layers, 1/1 seqs), K (q8_0): 272.00 MiB, V (q8_0): 272.00 MiB
|
||||
llama_context: HTP0 compute buffer size = 15.00 MiB
|
||||
llama_context: HTP1 compute buffer size = 15.00 MiB
|
||||
llama_context: CPU compute buffer size = 24.56 MiB
|
||||
...
|
||||
llama_perf_context_print: prompt eval time = 1730.57 ms / 212 tokens ( 8.16 ms per token, 122.50 tokens per second)
|
||||
llama_perf_context_print: eval time = 5624.75 ms / 257 runs ( 21.89 ms per token, 45.69 tokens per second)
|
||||
llama_perf_context_print: total time = 7377.33 ms / 469 tokens
|
||||
llama_perf_context_print: graphs reused = 255
|
||||
llama_memory_breakdown_print: | memory breakdown [MiB] | total free self model context compute unaccounted |
|
||||
llama_memory_breakdown_print: | - HTP0 (Hexagon) | 2048 = 2048 + ( 0 = 0 + 0 + 0) + 0 |
|
||||
llama_memory_breakdown_print: | - HTP1 (Hexagon) | 2048 = 2048 + ( 0 = 0 + 0 + 0) + 0 |
|
||||
llama_memory_breakdown_print: | - Host | 742 = 144 + 544 + 54 |
|
||||
llama_memory_breakdown_print: | - HTP1-REPACK | 1575 = 1575 + 0 + 0 |
|
||||
llama_memory_breakdown_print: | - HTP0-REPACK | 2025 = 2025 + 0 + 0 |
|
||||
```
|
||||
|
||||
Op test for MUL_MAT
|
||||
|
||||
```
|
||||
~/src/llama.cpp$ HB=0 ./scripts/snapdragon/adb/run-tool.sh test-backend-ops -b HTP0 -o MUL_MAT
|
||||
...
|
||||
Backend 2/3: HTP0
|
||||
Device description: Hexagon
|
||||
Device memory: 2048 MB (2048 MB free)
|
||||
MUL_MAT(type_a=q4_0,type_b=f32,m=16,n=1,k=256,bs=[1,1],nr=[1,1],per=[0,1,2,3],v=0,o=1): OK
|
||||
MUL_MAT(type_a=q4_0,type_b=f32,m=16,n=2,k=256,bs=[1,1],nr=[1,1],per=[0,1,2,3],v=0,o=1): OK
|
||||
MUL_MAT(type_a=q4_0,type_b=f32,m=16,n=3,k=256,bs=[1,1],nr=[1,1],per=[0,1,2,3],v=0,o=1): OK
|
||||
|
||||
~/src/llama.cpp-hexagon$ M=Llama-3.2-1B-Instruct-Q4_0.gguf ./scripts/snapdragon/adb/run-bench.sh -p 128 -n 64
|
||||
...
|
||||
ggml-hex: Hexagon backend (experimental) : allocating new registry : ndev 1
|
||||
ggml-hex: Hexagon Arch version v79
|
||||
ggml-hex: allocating new session: HTP0
|
||||
ggml-hex: new session: HTP0 : session-id 0 domain-id 3 uri file:///libggml-htp-v79.so?htp_iface_skel_handle_invoke&_modver=1.0&_dom=cdsp&_session=0 handle 0xb400007d4b231090
|
||||
| model | size | params | backend | ngl | threads | n_batch | mmap | test | t/s |
|
||||
| ---------------| ---------: | -----: | ---------- | --: | ------: | ------: | ---: | ----: | ------------: |
|
||||
| llama 1B Q4_0 | 729.75 MiB | 1.24 B | HTP | 99 | 4 | 128 | 0 | pp128 | 169.42 ± 1.75 |
|
||||
| llama 1B Q4_0 | 729.75 MiB | 1.24 B | HTP | 99 | 4 | 128 | 0 | tg64 | 51.54 ± 1.13 |
|
||||
|
||||
build: 6a8cf8914 (6733)
|
||||
```
|
||||
|
||||
## Environment variables
|
||||
|
||||
- `GGML_HEXAGON_NDEV=1`
|
||||
Controls the number of devices/sessions to allocate. The default is 1.
|
||||
Most quantized models under 4B fit into a single session; an 8B model needs two, and a 20B model needs four.
|
||||
|
||||
- `GGML_HEXAGON_NHVX=0`
|
||||
Controls the number of HVX hardware threads to use. The default is all (actual number varies depending on the hardware version).
|
||||
|
||||
- `GGML_HEXAGON_HOSTBUF=1`
|
||||
Controls whether the Hexagon backend allocates host buffers. By default, all buffers except for REPACK are host buffers.
|
||||
This option is required for testing Ops that require REPACK buffers (MUL_MAT and MUL_MAT_ID).
|
||||
|
||||
- `GGML_HEXAGON_VERBOSE=1`
|
||||
Enables verbose logging of Ops from the backend. Example output:
|
||||
|
||||
```
|
||||
ggml-hex: HTP0 graph-compute n_nodes 2
|
||||
ggml-hex: HTP0 matmul : blk.27.ffn_up.weight x ffn_norm-27 -> ffn_up-27 : 3072:8192 x 3072:1 -> 8192:1 : q4_0 x f32 -> f32 : HTP0 x HTP0 -> HTP0 : flags 0x1
|
||||
ggml-hex: HTP0 matmul : blk.27.ffn_gate.weight x ffn_norm-27 -> ffn_gate-27 : 3072:8192 x 3072:1 -> 8192:1 : q4_0 x f32 -> f32 : HTP0 x HTP0 -> HTP0 : flags 0x3
|
||||
ggml-hex: HTP0 graph-compute n_nodes 1
|
||||
ggml-hex: HTP0 matmul : blk.27.ffn_down.weight x ffn_gate_par-27 -> ffn_out-27 : 8192:3072 x 8192:1 -> 3072:1 : q4_0 x f32 -> f32 : HTP0 x HTP0 -> HTP0 : flags 0x0
|
||||
ggml-hex: HTP0 get-tensor result_output : data 0x7592487000 offset 0 size 513024
|
||||
```
|
||||
|
||||
- `GGML_HEXAGON_PROFILE=1`
|
||||
Generates a host-side profile for the ggml-hexagon Ops.
|
||||
|
||||
- `GGML_HEXAGON_OPMASK=0x0`
|
||||
Allows enabling specific stages of the processing pipeline:
|
||||
|
||||
- `0x1` Enable Op Queue (i.e., queuing Ops into NPU)
|
||||
- `0x2` Enable Dynamic Quantizer (if needed for the Op)
|
||||
- `0x4` Enable Op Compute (MUL_MAT, etc.)
|
||||
|
||||
Examples:
|
||||
|
||||
`GGML_HEXAGON_OPMASK=0x1 llama-cli ...` - Ops are enqueued but NPU-side processing is stubbed out
|
||||
`GGML_HEXAGON_OPMASK=0x3 llama-cli ...` - NPU performs dynamic quantization and skips the rest
|
||||
`GGML_HEXAGON_OPMASK=0x7 llama-cli ...` - Full queuing and processing of Ops (default)
|
||||
109
docs/backend/hexagon/developer.md
Normal file
109
docs/backend/hexagon/developer.md
Normal file
@@ -0,0 +1,109 @@
|
||||
# Hexagon backend developer details
|
||||
|
||||
## Backend libraries
|
||||
|
||||
The Hexagon backend consist of two parts:
|
||||
|
||||
- `libggml-hexagon`
|
||||
This is the regular CPU-side GGML backend library, either shared or statically linked
|
||||
|
||||
- `libggml-htp-vNN`
|
||||
This is the NPU-side (HTP stands for Hexagon Tensor Processor) shared library that contains the Op dispatcher and kernels.
|
||||
The correct library is selected automatically at runtime based on the HW version.
|
||||
|
||||
Here is an example of the build artifacts
|
||||
|
||||
```
|
||||
~/src/llama.cpp$ ls -l pkg-adb/llama.cpp/lib/libggml*
|
||||
pkg-adb/llama.cpp/lib/libggml-base.so
|
||||
pkg-adb/llama.cpp/lib/libggml-cpu.so
|
||||
pkg-adb/llama.cpp/lib/libggml-hexagon.so <<< CPU library
|
||||
pkg-adb/llama.cpp/lib/libggml-htp-v73.so <<< HTP op/kernels for Hexagon v73
|
||||
pkg-adb/llama.cpp/lib/libggml-htp-v75.so
|
||||
pkg-adb/llama.cpp/lib/libggml-htp-v79.so
|
||||
pkg-adb/llama.cpp/lib/libggml-htp-v81.so
|
||||
```
|
||||
|
||||
## Memory buffers
|
||||
|
||||
Hexagon NPU backend takes advantage of the Snapdragon's unified memory model where all buffers are fully accessible by the CPU and GPU.
|
||||
The NPU does have a dedicated tightly-coupled memory called VTCM but that memory is used only for intermediate data (e.g. dynamically
|
||||
quantized tensors) or temporary data (chunks of the weight tensors fetched via DMA).
|
||||
|
||||
Please note that currently the Hexagon backend does not implement SET/GET_ROWS Ops because there is no advantage in offloading those
|
||||
to the NPU at this point.
|
||||
|
||||
The backend does allocates non-host buffers for the tensors with datatypes that require repacking: Q4_0, Q8_0, MXFP4.
|
||||
From the MMU perspective these buffers are still regular buffers (normal access by the CPU) they are marked as non-host simply to force
|
||||
the repacking.
|
||||
|
||||
## Large model handling
|
||||
|
||||
Hexagon NPU session (aka Process Domain (PD) in the Hexagon docs) is limited to a memory mapping of around 3.5GB.
|
||||
In llama.cpp/GGML the Hexagon session is mapped to a single GGML backend device (HTP0, HTP1, etc).
|
||||
|
||||
In order to map models larger than 3.5GB we need to allocate multiple devices and split the model.
|
||||
For this we're taking advantage of the llama.cpp/GGML multi-GPU layer-splitting support.
|
||||
Each Hexagon device behaves like a GPU from the offload and model splitting perspective.
|
||||
|
||||
Here is an example of running GPT-OSS-20B model on a newer Snapdragon device with 16GB of DDR.
|
||||
|
||||
```
|
||||
M=gpt-oss-20b-Q4_0.gguf NDEV=4 D=HTP0,HTP1,HTP2,HTP3 P=surfing.txt scripts/snapdragon/adb/run-cli.sh -no-cnv -f surfing.txt -n 32
|
||||
...
|
||||
LD_LIBRARY_PATH=/data/local/tmp/llama.cpp/lib
|
||||
ADSP_LIBRARY_PATH=/data/local/tmp/llama.cpp/lib
|
||||
GGML_HEXAGON_NDEV=4 ./bin/llama-cli --no-mmap -m /data/local/tmp/llama.cpp/../gguf/gpt-oss-20b-Q4_0.gguf
|
||||
-t 4 --ctx-size 8192 --batch-size 128 -ctk q8_0 -ctv q8_0 -fa on -ngl 99 --device HTP0,HTP1,HTP2,HTP3 -no-cnv -f surfing.txt
|
||||
...
|
||||
llama_model_loader: - type f32: 289 tensors
|
||||
llama_model_loader: - type q4_0: 96 tensors
|
||||
llama_model_loader: - type q8_0: 2 tensors
|
||||
llama_model_loader: - type mxfp4: 72 tensors
|
||||
...
|
||||
load_tensors: offloaded 25/25 layers to GPU
|
||||
load_tensors: CPU model buffer size = 1182.09 MiB
|
||||
load_tensors: HTP1 model buffer size = 6.64 MiB
|
||||
load_tensors: HTP1-REPACK model buffer size = 2505.94 MiB
|
||||
load_tensors: HTP3 model buffer size = 5.55 MiB
|
||||
load_tensors: HTP3-REPACK model buffer size = 2088.28 MiB
|
||||
load_tensors: HTP0 model buffer size = 7.75 MiB
|
||||
load_tensors: HTP0-REPACK model buffer size = 2923.59 MiB
|
||||
load_tensors: HTP2 model buffer size = 6.64 MiB
|
||||
load_tensors: HTP2-REPACK model buffer size = 2505.94 MiB
|
||||
...
|
||||
llama_context: n_ctx_per_seq (8192) < n_ctx_train (131072) -- the full capacity of the model will not be utilized
|
||||
llama_context: CPU output buffer size = 0.77 MiB
|
||||
llama_kv_cache_iswa: creating non-SWA KV cache, size = 8192 cells
|
||||
llama_kv_cache: HTP1 KV buffer size = 25.50 MiB
|
||||
llama_kv_cache: HTP3 KV buffer size = 25.50 MiB
|
||||
llama_kv_cache: HTP0 KV buffer size = 25.50 MiB
|
||||
llama_kv_cache: HTP2 KV buffer size = 25.50 MiB
|
||||
llama_kv_cache: size = 102.00 MiB ( 8192 cells, 12 layers, 1/1 seqs), K (q8_0): 51.00 MiB, V (q8_0): 51.00 MiB
|
||||
llama_kv_cache_iswa: creating SWA KV cache, size = 256 cells
|
||||
llama_kv_cache: HTP1 KV buffer size = 0.80 MiB
|
||||
llama_kv_cache: HTP3 KV buffer size = 0.53 MiB
|
||||
llama_kv_cache: HTP0 KV buffer size = 1.06 MiB
|
||||
llama_kv_cache: HTP2 KV buffer size = 0.80 MiB
|
||||
llama_kv_cache: size = 3.19 MiB ( 256 cells, 12 layers, 1/1 seqs), K (q8_0): 1.59 MiB, V (q8_0): 1.59 MiB
|
||||
llama_context: HTP0 compute buffer size = 16.06 MiB
|
||||
llama_context: HTP1 compute buffer size = 16.06 MiB
|
||||
llama_context: HTP2 compute buffer size = 16.06 MiB
|
||||
llama_context: HTP3 compute buffer size = 16.06 MiB
|
||||
llama_context: CPU compute buffer size = 98.19 MiB
|
||||
...
|
||||
llama_perf_context_print: prompt eval time = 3843.67 ms / 197 tokens ( 19.51 ms per token, 51.25 tokens per second)
|
||||
llama_perf_context_print: eval time = 1686.13 ms / 31 runs ( 54.39 ms per token, 18.39 tokens per second)
|
||||
llama_perf_context_print: total time = 6266.30 ms / 228 tokens
|
||||
llama_perf_context_print: graphs reused = 30
|
||||
llama_memory_breakdown_print: | memory breakdown [MiB] | total free self model context compute unaccounted |
|
||||
llama_memory_breakdown_print: | - HTP0 (Hexagon) | 2048 = 2048 + ( 0 = 0 + 0 + 0) + 0 |
|
||||
llama_memory_breakdown_print: | - HTP1 (Hexagon) | 2048 = 2048 + ( 0 = 0 + 0 + 0) + 0 |
|
||||
llama_memory_breakdown_print: | - HTP2 (Hexagon) | 2048 = 2048 + ( 0 = 0 + 0 + 0) + 0 |
|
||||
llama_memory_breakdown_print: | - HTP3 (Hexagon) | 2048 = 2048 + ( 0 = 0 + 0 + 0) + 0 |
|
||||
llama_memory_breakdown_print: | - Host | 1476 = 1208 + 105 + 162 |
|
||||
llama_memory_breakdown_print: | - HTP1-REPACK | 2505 = 2505 + 0 + 0 |
|
||||
llama_memory_breakdown_print: | - HTP3-REPACK | 2088 = 2088 + 0 + 0 |
|
||||
llama_memory_breakdown_print: | - HTP0-REPACK | 2923 = 2923 + 0 + 0 |
|
||||
llama_memory_breakdown_print: | - HTP2-REPACK | 2505 = 2505 + 0 + 0 |
|
||||
```
|
||||
Reference in New Issue
Block a user