Merge branch 'master' into compilade/refactor-kv-cache

This commit is contained in:
Francis Couture-Harpin
2024-09-14 16:08:52 -04:00
144 changed files with 11344 additions and 6693 deletions

View File

@@ -1,15 +1,13 @@
#include "arg.h"
#include "common.h"
#include "llama.h"
#include <algorithm>
#include <cmath>
#include <cstdio>
#include <string>
#include <vector>
static void print_usage(int argc, char ** argv, const gpt_params & params) {
gpt_params_print_usage(argc, argv, params);
static void print_usage(int, char ** argv) {
LOG_TEE("\nexample usage:\n");
LOG_TEE("\n %s -m model.gguf -p \"Hello my name is\" -n 32 -np 4\n", argv[0]);
LOG_TEE("\n");
@@ -21,8 +19,7 @@ int main(int argc, char ** argv) {
params.prompt = "Hello my name is";
params.n_predict = 32;
if (!gpt_params_parse(argc, argv, params)) {
print_usage(argc, argv, params);
if (!gpt_params_parse(argc, argv, params, LLAMA_EXAMPLE_COMMON, print_usage)) {
return 1;
}
@@ -65,6 +62,15 @@ int main(int argc, char ** argv) {
llama_context * ctx = llama_new_context_with_model(model, ctx_params);
auto sparams = llama_sampler_chain_default_params();
llama_sampler * smpl = llama_sampler_chain_init(sparams);
llama_sampler_chain_add(smpl, llama_sampler_init_top_k(params.sparams.top_k));
llama_sampler_chain_add(smpl, llama_sampler_init_top_p(params.sparams.top_p, params.sparams.min_keep));
llama_sampler_chain_add(smpl, llama_sampler_init_temp (params.sparams.temp));
llama_sampler_chain_add(smpl, llama_sampler_init_dist (params.sparams.seed));
if (ctx == NULL) {
fprintf(stderr , "%s: error: failed to create the llama_context\n" , __func__);
return 1;
@@ -164,29 +170,7 @@ int main(int argc, char ** argv) {
continue;
}
auto n_vocab = llama_n_vocab(model);
auto * logits = llama_get_logits_ith(ctx, i_batch[i]);
std::vector<llama_token_data> candidates;
candidates.reserve(n_vocab);
for (llama_token token_id = 0; token_id < n_vocab; token_id++) {
candidates.emplace_back(llama_token_data{ token_id, logits[token_id], 0.0f });
}
llama_token_data_array candidates_p = { candidates.data(), candidates.size(), false };
const int top_k = 40;
const float top_p = 0.9f;
const float temp = 0.4f;
llama_sample_top_k(ctx, &candidates_p, top_k, 1);
llama_sample_top_p(ctx, &candidates_p, top_p, 1);
llama_sample_temp (ctx, &candidates_p, temp);
const llama_token new_token_id = llama_sample_token(ctx, &candidates_p);
//const llama_token new_token_id = llama_sample_token_greedy(ctx, &candidates_p);
const llama_token new_token_id = llama_sampler_sample(smpl, ctx, i_batch[i]);
// is it an end of generation? -> mark the stream as finished
if (llama_token_is_eog(model, new_token_id) || n_cur == n_predict) {
@@ -244,12 +228,15 @@ int main(int argc, char ** argv) {
LOG_TEE("%s: decoded %d tokens in %.2f s, speed: %.2f t/s\n",
__func__, n_decode, (t_main_end - t_main_start) / 1000000.0f, n_decode / ((t_main_end - t_main_start) / 1000000.0f));
llama_print_timings(ctx);
LOG_TEE("\n");
llama_perf_sampler_print(smpl);
llama_perf_context_print(ctx);
fprintf(stderr, "\n");
llama_batch_free(batch);
llama_sampler_free(smpl);
llama_free(ctx);
llama_free_model(model);