mirror of
https://github.com/ggml-org/llama.cpp.git
synced 2025-10-28 08:31:25 +00:00
model-conversion : add qat-q4 quantization targets (#15588)
This commit adds two targets to the Makefile for quantizing of Quantization Aware Trained (QAT) models to Q4_0 format. The motivation for this is that this sets the token embedding and the output tensors data types to Q8_0 instead of the default Q6_K. This is someting that we wish to enforce for QAT Q4_0 models that are to be uploaded to ggml-org on Huggingface to guarantee the best quality.
This commit is contained in:
@@ -1,4 +1,5 @@
|
||||
# Validation functions
|
||||
MAKEFLAGS += --no-print-directory
|
||||
|
||||
define validate_model_path
|
||||
@if [ -z "$(MODEL_PATH)" ]; then \
|
||||
echo "Error: MODEL_PATH must be provided either as:"; \
|
||||
@@ -17,6 +18,13 @@ define validate_embedding_model_path
|
||||
fi
|
||||
endef
|
||||
|
||||
define quantize_model
|
||||
@CONVERTED_MODEL="$(1)" QUANTIZED_TYPE="$(QUANTIZED_TYPE)" \
|
||||
TOKEN_EMBD_TYPE="$(TOKEN_EMBD_TYPE)" OUTPUT_TYPE="$(OUTPUT_TYPE)" \
|
||||
./scripts/utils/quantize.sh "$(1)" "$(QUANTIZED_TYPE)" "$(TOKEN_EMBD_TYPE)" "$(OUTPUT_TYPE)"
|
||||
@echo "Export the quantized model path to $(2) variable in your environment"
|
||||
endef
|
||||
|
||||
###
|
||||
### Casual Model targets/recipes
|
||||
###
|
||||
@@ -67,9 +75,15 @@ causal-quantize-Q8_0: causal-quantize-model
|
||||
causal-quantize-Q4_0: QUANTIZED_TYPE = Q4_0
|
||||
causal-quantize-Q4_0: causal-quantize-model
|
||||
|
||||
# For Quantization Aware Trained (QAT) models in Q4_0 we explicitly set the
|
||||
# token embedding and output types to Q8_0 instead of the default Q6_K.
|
||||
causal-quantize-qat-Q4_0: QUANTIZED_TYPE = Q4_0
|
||||
causal-quantize-qat-Q4_0: TOKEN_EMBD_TYPE = Q8_0
|
||||
causal-quantize-qat-Q4_0: OUTPUT_TYPE = Q8_0
|
||||
causal-quantize-qat-Q4_0: causal-quantize-model
|
||||
|
||||
causal-quantize-model:
|
||||
@CONVERTED_MODEL="$(CONVERTED_MODEL)" QUANTIZED_TYPE="$(QUANTIZED_TYPE)" ./scripts/utils/quantize.sh ${CONVERTED_MODEL} ${QUANTIZED_TYPE}
|
||||
@echo "Export the quantized model path to QUANTIZED_MODEL variable in your environment"
|
||||
$(call quantize_model,$(CONVERTED_MODEL),QUANTIZED_MODEL)
|
||||
|
||||
causal-run-quantized-model:
|
||||
@QUANTIZED_MODEL="$(QUANTIZED_MODEL)" ./scripts/causal/run-converted-model.sh ${QUANTIZED_MODEL}
|
||||
@@ -117,9 +131,15 @@ embedding-quantize-Q8_0: embedding-quantize-model
|
||||
embedding-quantize-Q4_0: QUANTIZED_TYPE = Q4_0
|
||||
embedding-quantize-Q4_0: embedding-quantize-model
|
||||
|
||||
# For Quantization Aware Trained (QAT) models in Q4_0 we explicitly set the
|
||||
# token embedding and output types to Q8_0 instead of the default Q6_K.
|
||||
embedding-quantize-qat-Q4_0: QUANTIZED_TYPE = Q4_0
|
||||
embedding-quantize-qat-Q4_0: TOKEN_EMBD_TYPE = Q8_0
|
||||
embedding-quantize-qat-Q4_0: OUTPUT_TYPE = Q8_0
|
||||
embedding-quantize-qat-Q4_0: embedding-quantize-model
|
||||
|
||||
embedding-quantize-model:
|
||||
@./scripts/utils/quantize.sh ${CONVERTED_EMBEDDING_MODEL} ${QUANTIZED_TYPE}
|
||||
@echo "Export the quantized model path to QUANTIZED_EMBEDDING_MODEL variable in your environment"
|
||||
$(call quantize_model,$(CONVERTED_EMBEDDING_MODEL),QUANTIZED_EMBEDDING_MODEL)
|
||||
|
||||
embedding-run-quantized-model:
|
||||
@./scripts/embedding/run-converted-model.sh ${QUANTIZED_EMBEDDING_MODEL}
|
||||
|
||||
@@ -137,6 +137,18 @@ Then the quantized model can be run using the following command:
|
||||
(venv) $ make causal-run-quantized-model
|
||||
```
|
||||
|
||||
### Quantizing QAT (Quantization Aware Training) models
|
||||
When quantizing to `Q4_0`, the default data type for the token embedding weights
|
||||
will be `Q6_K`. For models that are going to be uploaded to ggml-org it is
|
||||
recommended to use `Q8_0` instead for the embeddings and output tensors.
|
||||
The reason is that although `Q6_K` is smaller in size, it requires more compute
|
||||
to unpack, which can hurt performance during output generation when the entire
|
||||
embedding matrix must be dequantized to compute vocabulary logits. `Q8_0`
|
||||
provides practically full quality with better computational efficiency.
|
||||
```console
|
||||
(venv) $ make causal-quantize-qat-Q4_0
|
||||
```
|
||||
|
||||
|
||||
## Embedding Language Model Conversion
|
||||
|
||||
@@ -238,6 +250,18 @@ Then the quantized model can be run using the following command:
|
||||
(venv) $ make embedding-run-quantized-model
|
||||
```
|
||||
|
||||
### Quantizing QAT (Quantization Aware Training) models
|
||||
When quantizing to `Q4_0`, the default data type for the token embedding weights
|
||||
will be `Q6_K`. For models that are going to be uploaded to ggml-org it is
|
||||
recommended to use `Q8_0` instead for the embeddings and output tensors.
|
||||
The reason is that although `Q6_K` is smaller in size, it requires more compute
|
||||
to unpack, which can hurt performance during output generation when the entire
|
||||
embedding matrix must be dequantized to compute vocabulary logits. `Q8_0`
|
||||
provides practically full quality with better computational efficiency.
|
||||
```console
|
||||
(venv) $ make embedding-quantize-qat-Q4_0
|
||||
```
|
||||
|
||||
## Perplexity Evaluation
|
||||
|
||||
### Simple perplexity evaluation
|
||||
|
||||
@@ -4,6 +4,8 @@ set -e
|
||||
|
||||
CONVERTED_MODEL="${1:-"$CONVERTED_MODEL"}"
|
||||
QUANTIZED_TYPE="${2:-"$QUANTIZED_TYPE"}"
|
||||
TOKEN_EMBD_TYPE="${3:-"${TOKEN_EMBD_TYPE}"}"
|
||||
OUTPUT_TYPE="${4:-"${OUTPUT_TYPE}"}"
|
||||
QUANTIZED_MODEL=$CONVERTED_MODEL
|
||||
|
||||
# Final check if we have a model path
|
||||
@@ -14,6 +16,11 @@ if [ -z "$CONVERTED_MODEL" ]; then
|
||||
exit 1
|
||||
fi
|
||||
|
||||
if [ -z "$QUANTIZED_TYPE" ]; then
|
||||
echo "Error: QUANTIZED_TYPE is required" >&2
|
||||
exit 1
|
||||
fi
|
||||
|
||||
echo $CONVERTED_MODEL
|
||||
|
||||
# Process the quantized model filename
|
||||
@@ -26,9 +33,16 @@ else
|
||||
exit 1
|
||||
fi
|
||||
|
||||
|
||||
cmake --build ../../build --target llama-quantize -j8
|
||||
|
||||
../../build/bin/llama-quantize $CONVERTED_MODEL $QUANTIZED_MODEL $QUANTIZED_TYPE
|
||||
echo $TOKEN_EMBD_TYPE
|
||||
echo $OUTPUT_TYPE
|
||||
|
||||
CMD_ARGS=("../../build/bin/llama-quantize")
|
||||
[[ -n "$TOKEN_EMBD_TYPE" ]] && CMD_ARGS+=("--token-embedding-type" "$TOKEN_EMBD_TYPE")
|
||||
[[ -n "$OUTPUT_TYPE" ]] && CMD_ARGS+=("--output-tensor-type" "$OUTPUT_TYPE")
|
||||
CMD_ARGS+=("$CONVERTED_MODEL" "$QUANTIZED_MODEL" "$QUANTIZED_TYPE")
|
||||
|
||||
"${CMD_ARGS[@]}"
|
||||
|
||||
echo "Quantized model saved to: $QUANTIZED_MODEL"
|
||||
|
||||
Reference in New Issue
Block a user