server : implement prompt processing progress report in stream mode (#15827)

* server : implement `return_progress`

* add timings.cache_n

* add progress.time_ms

* add test

* fix test for chat/completions

* readme: add docs on timings

* use ggml_time_us

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>

---------

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
This commit is contained in:
Xuan-Son Nguyen
2025-09-06 18:35:04 +07:00
committed by GitHub
parent 01806e7771
commit 61bdfd5298
3 changed files with 152 additions and 18 deletions

View File

@@ -512,6 +512,8 @@ These words will not be included in the completion, so make sure to add them to
`timings_per_token`: Include prompt processing and text generation speed information in each response. Default: `false`
`return_progress`: Include prompt processing progress in `stream` mode. The progress will be contained inside `prompt_progress` with 3 values: `total`, `cache` and `processed`. The overall progress is `processed/total`, while the actual timed progress is `(processed-cache)/(total-cache)`. Default: `false`
`post_sampling_probs`: Returns the probabilities of top `n_probs` tokens after applying sampling chain.
`response_fields`: A list of response fields, for example: `"response_fields": ["content", "generation_settings/n_predict"]`. If the specified field is missing, it will simply be omitted from the response without triggering an error. Note that fields with a slash will be unnested; for example, `generation_settings/n_predict` will move the field `n_predict` from the `generation_settings` object to the root of the response and give it a new name.
@@ -1276,6 +1278,34 @@ curl http://localhost:8080/v1/chat/completions \
**See our [Function calling](../../docs/function-calling.md) docs** for more details, supported native tool call styles (generic tool call style is used as fallback) / examples of use.
*Timings and context usage*
The response contains a `timings` object, for example:
```js
{
"choices": [],
"created": 1757141666,
"id": "chatcmpl-ecQULm0WqPrftUqjPZO1CFYeDjGZNbDu",
// ...
"timings": {
"cache_n": 236, // number of prompt tokens reused from cache
"prompt_n": 1, // number of prompt tokens being processed
"prompt_ms": 30.958,
"prompt_per_token_ms": 30.958,
"prompt_per_second": 32.301828283480845,
"predicted_n": 35, // number of predicted tokens
"predicted_ms": 661.064,
"predicted_per_token_ms": 18.887542857142858,
"predicted_per_second": 52.94494935437416
}
}
```
This provides information on the performance of the server. It also allows calculating the current context usage.
The total number of tokens in context is equal to `prompt_n + cache_n + predicted_n`
### POST `/v1/embeddings`: OpenAI-compatible embeddings API
This endpoint requires that the model uses a pooling different than type `none`. The embeddings are normalized using the Eucledian norm.

View File

@@ -110,9 +110,10 @@ static bool server_task_type_need_logits(server_task_type task_type) {
}
struct slot_params {
bool stream = true;
bool cache_prompt = true; // remember the prompt to avoid reprocessing all prompt
bool return_tokens = false;
bool stream = true;
bool cache_prompt = true; // remember the prompt to avoid reprocessing all prompt
bool return_tokens = false;
bool return_progress = false;
int32_t n_keep = 0; // number of tokens to keep from initial prompt
int32_t n_discard = 0; // number of tokens after n_keep that may be discarded when shifting context, 0 defaults to half
@@ -307,11 +308,11 @@ struct server_task {
// enabling this will output extra debug information in the HTTP responses from the server
params.verbose = params_base.verbosity > 9;
params.timings_per_token = json_value(data, "timings_per_token", false);
params.stream = json_value(data, "stream", false);
params.cache_prompt = json_value(data, "cache_prompt", true);
params.return_tokens = json_value(data, "return_tokens", false);
params.return_progress = json_value(data, "return_progress", false);
params.n_predict = json_value(data, "n_predict", json_value(data, "max_tokens", defaults.n_predict));
params.n_indent = json_value(data, "n_indent", defaults.n_indent);
params.n_keep = json_value(data, "n_keep", defaults.n_keep);
@@ -608,6 +609,8 @@ struct server_task {
};
struct result_timings {
int32_t cache_n = -1;
int32_t prompt_n = -1;
double prompt_ms;
double prompt_per_token_ms;
@@ -624,6 +627,8 @@ struct result_timings {
json to_json() const {
json base = {
{"cache_n", cache_n},
{"prompt_n", prompt_n},
{"prompt_ms", prompt_ms},
{"prompt_per_token_ms", prompt_per_token_ms},
@@ -644,6 +649,22 @@ struct result_timings {
}
};
struct result_prompt_progress {
int32_t total = 0;
int32_t cache = 0;
int32_t processed = 0;
int64_t time_ms = 0;
json to_json() const {
return json {
{"total", total},
{"cache", cache},
{"processed", processed},
{"time_ms", time_ms},
};
}
};
struct server_task_result {
int id = -1;
int id_slot = -1;
@@ -999,8 +1020,10 @@ struct server_task_result_cmpl_partial : server_task_result {
int32_t n_prompt_tokens;
bool post_sampling_probs;
bool is_progress = false;
completion_token_output prob_output;
result_timings timings;
result_prompt_progress progress;
// OAI-compat fields
bool verbose = false;
@@ -1045,6 +1068,9 @@ struct server_task_result_cmpl_partial : server_task_result {
if (timings.prompt_n > 0) {
res.push_back({"timings", timings.to_json()});
}
if (is_progress) {
res.push_back({"prompt_progress", progress.to_json()});
}
if (!prob_output.probs.empty()) {
res["completion_probabilities"] = completion_token_output::probs_vector_to_json({prob_output}, post_sampling_probs);
}
@@ -1082,6 +1108,9 @@ struct server_task_result_cmpl_partial : server_task_result {
if (timings.prompt_n >= 0) {
res.push_back({"timings", timings.to_json()});
}
if (is_progress) {
res.push_back({"prompt_progress", progress.to_json()});
}
return res;
}
@@ -1109,7 +1138,7 @@ struct server_task_result_cmpl_partial : server_task_result {
});
};
// We have to send an initial update to conform to openai behavior
if (first) {
if (first || is_progress) {
add_delta({
{"role", "assistant"},
{"content", nullptr},
@@ -1121,16 +1150,20 @@ struct server_task_result_cmpl_partial : server_task_result {
}
if (!deltas.empty()) {
GGML_ASSERT(deltas[deltas.size() - 1].at("choices").size() >= 1);
auto & last_json = deltas[deltas.size() - 1];
GGML_ASSERT(last_json.at("choices").size() >= 1);
if (prob_output.probs.size() > 0) {
deltas[deltas.size() - 1].at("choices").at(0)["logprobs"] = json {
last_json.at("choices").at(0)["logprobs"] = json {
{"content", completion_token_output::probs_vector_to_json({prob_output}, post_sampling_probs)},
};
}
if (timings.prompt_n >= 0) {
deltas[deltas.size() - 1].push_back({"timings", timings.to_json()});
last_json.push_back({"timings", timings.to_json()});
}
if (is_progress) {
last_json.push_back({"prompt_progress", progress.to_json()});
}
}
@@ -1404,6 +1437,7 @@ struct server_slot {
// n_prompt_tokens may not be equal to prompt_tokens.size(), because prompt maybe truncated
int32_t n_prompt_tokens = 0;
int32_t n_prompt_tokens_cache = 0;
int32_t n_prompt_tokens_processed = 0;
// input prompt tokens
@@ -1456,7 +1490,9 @@ struct server_slot {
void reset() {
SLT_DBG(*this, "%s", "\n");
n_prompt_tokens = 0;
n_prompt_tokens = 0;
n_prompt_tokens_cache = 0;
last_nl_pos = 0;
generated_text = "";
has_new_line = false;
@@ -1547,6 +1583,8 @@ struct server_slot {
result_timings get_timings() const {
result_timings timings;
timings.cache_n = n_prompt_tokens_cache;
timings.prompt_n = n_prompt_tokens_processed;
timings.prompt_ms = t_prompt_processing;
timings.prompt_per_token_ms = t_prompt_processing / n_prompt_tokens_processed;
@@ -2520,7 +2558,7 @@ struct server_context {
slot.add_token(result);
if (slot.params.stream) {
send_partial_response(slot, result);
send_partial_response(slot, result, false);
}
}
@@ -2712,13 +2750,24 @@ struct server_context {
return true;
}
void send_partial_response(server_slot & slot, const completion_token_output & tkn) {
void send_partial_response(server_slot & slot, const completion_token_output & tkn, bool is_progress) {
auto res = std::make_unique<server_task_result_cmpl_partial>();
res->id = slot.id_task;
res->index = slot.index;
res->content = tkn.text_to_send;
res->tokens = { tkn.tok };
res->id = slot.id_task;
res->index = slot.index;
if (is_progress) {
res->is_progress = true;
res->progress.total = slot.n_prompt_tokens;
res->progress.cache = slot.n_prompt_tokens_cache;
res->progress.processed = slot.cache_tokens.size();
res->progress.time_ms = (ggml_time_us() - slot.t_start_process_prompt / 1000);
} else {
res->content = tkn.text_to_send;
res->tokens = { tkn.tok };
slot.update_chat_msg(res->oaicompat_msg_diffs);
}
res->n_decoded = slot.n_decoded;
res->n_prompt_tokens = slot.n_prompt_tokens;
@@ -2729,8 +2778,6 @@ struct server_context {
res->oaicompat_model = slot.params.oaicompat_model;
res->oaicompat_cmpl_id = slot.params.oaicompat_cmpl_id;
slot.update_chat_msg(res->oaicompat_msg_diffs);
// populate res.probs_output
if (slot.params.sampling.n_probs > 0) {
res->prob_output = tkn; // copy the token probs
@@ -3557,6 +3604,7 @@ struct server_context {
slot.n_past--;
}
slot.n_prompt_tokens_cache = slot.n_past;
slot.n_prompt_tokens_processed = 0;
}
@@ -3573,7 +3621,8 @@ struct server_context {
llama_memory_seq_rm(llama_get_memory(ctx), slot.id, -1, -1);
// there is no common part left
slot.n_past = 0;
slot.n_past = 0;
slot.n_prompt_tokens_cache = 0;
}
SLT_INF(slot, "kv cache rm [%d, end)\n", slot.n_past);
@@ -3767,6 +3816,13 @@ struct server_context {
n_batch = llama_n_batch(ctx);
for (auto & slot : slots) {
// optionally send prompt processing progress
if (slot.state == SLOT_STATE_PROCESSING_PROMPT || slot.state == SLOT_STATE_DONE_PROMPT) {
if (slot.params.stream && slot.params.return_progress) {
send_partial_response(slot, {}, true);
}
}
if (slot.i_batch < (int) i || slot.i_batch >= (int) (i + n_tokens)) {
continue; // continue loop of slots
}

View File

@@ -402,3 +402,51 @@ def test_context_size_exceeded():
assert server.n_ctx is not None
assert server.n_slots is not None
assert res.body["error"]["n_ctx"] == server.n_ctx // server.n_slots
@pytest.mark.parametrize(
"n_batch,batch_count,reuse_cache",
[
(64, 15, False),
(64, 1, True),
]
)
def test_return_progresssss(n_batch, batch_count, reuse_cache):
global server
server.n_batch = n_batch
server.n_ctx = 2048
server.n_slots = 1
server.start()
def make_cmpl_request():
return server.make_stream_request("POST", "/chat/completions", data={
"max_tokens": 10,
"messages": [
{"role": "user", "content": "This is a test" * 100},
],
"stream": True,
"return_progress": True,
})
if reuse_cache:
# make a first request to populate the cache
res0 = make_cmpl_request()
for _ in res0:
pass # discard the output
res = make_cmpl_request()
last_progress = None
total_batch_count = 0
for data in res:
cur_progress = data.get("prompt_progress", None)
if cur_progress is None:
continue
if last_progress is not None:
assert cur_progress["total"] == last_progress["total"]
assert cur_progress["cache"] == last_progress["cache"]
assert cur_progress["processed"] > last_progress["processed"]
total_batch_count += 1
last_progress = cur_progress
assert last_progress is not None
assert last_progress["total"] > 0
assert last_progress["processed"] == last_progress["total"]
assert total_batch_count == batch_count