ggml-cpu: enable IBM NNPA Vector Intrinsics (#14317)

* ggml-cpu: add nnpa compile flag

Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>
(cherry picked from commit 4a9f60c201)

* ggml-cpu: add fp16->fp32 nnpa first

Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>
(cherry picked from commit 8d4a7987f9)

* ggml-cpu: add fp32->fp16

Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>
(cherry picked from commit 0ff0d65162)

* ggml-cpu: better variable names

Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>
(cherry picked from commit 2f58bbcbb8)

* docs: update s390x docs

Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>
(cherry picked from commit 01b929491b)

* ggml-cpu: add debugging prints to see if dlf16 is correct

Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>

* ggml-cpu: fix print vs printf

Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>

* ggml-cpu: fix float placeholder

Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>

* ggml-cpu: ensure fp16 and fp32 load and stores are called

Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>

* ggml-cpu: fp16 load ensured to hit

Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>

* ggml-cpu: remove sigint from fp16 store

for some reason, the function is not getting a hit when debugged with
    gdb. we will need to investigate further

Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>

* ggml-cpu: activate nnpa for ggml_cpu_fp16_to_fp32

Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>

* ggml-cpu: nnpa activate ggml_cpu_fp16_to_fp32 for 8 elements

Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>

* ggml-cpu: nnpa switch to vec_xst test

Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>

* ggml-cpu: switch to vec_xst for 4 element loops also

Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>

* ggml-cpu: rework noop

Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>

* ggml-cpu: remove noop, general code cleanup

Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>

* ggml-cpu: clarify variable naming

Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>

* ggml-cpu: activate nnpa for ggml_cpu_fp32_to_fp16

Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>

* ggml-cpu: add breakpoint for debugging

Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>

* ggml-cpu: test fix for conversion failure

Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>

* ggml-cpu: disable fp32->fp16 nnpa conversions for now

there are some conversion failures in nnpa that requires the eyes of an
ibm stsm. will create a separate pr to introduce the fp32->fp16 change.

Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>

* ggml-cpu: switch to elif macro

Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>

* ggml-cpu: reattempt fp32->fp16

Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>

* ggml-cpu: fix typo

Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>

* ggml-cpu: reattempt fp32->fp16

Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>

* ggml-cpu: fix compiler types

Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>

* ggml-cpu: change to typedef vector types

Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>

* ggml-cpu: add 4 element loops for fp32->fp16

Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>

* ggml-cpu: clarified vector naming

Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>

* ggml-cpu: bring back fp32->fp16 store nnpa

Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>

* ggml-cpu: activate nnpa fp32->fp16 or fp16->fp32 compute

Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>

* ggml-cpu: add nnpa macro check in ggml-impl

Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>

* ggml-cpu: add missing __func__

Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>

* ggml-cpu: diagnose why __NNPA__ macro is not being defined

Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>

* ggml-cpu: import vecintrin.h to fix compiler errors

Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>

* ggml-cpu: update macro tests

Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>

* ggml-cpu: move s390x typedef to own header file

Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>

* Revert "ggml-cpu: move s390x typedef to own header file"

This reverts commit 157f856c34.

Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>

* ggml-cpu: switch to importing ggml-cpu-impl instead

Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>

* ggml-cpu: fix macro declaration

Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>

* ggml-cpu: test more macros

Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>

* ggml-cpu: add debug prints

Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>

* ggml-cpu: bruteforce macro definitions

Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>

* ggml-cpu: move macro definitions

Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>

* ggml-cpu: add ggml-impl.h to cmakelists

Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>

* ggml-cpu: switch to private macros

Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>

* ggml-cpu: move s390x typedef to own header file

Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>
(cherry picked from commit 157f856c34)

* ggml-cpu: move things around

Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>

* ggml-cpu: bring back compile macros

Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>

* ggml-cpu: switch to quotes for import

Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>

* ggml-cpu: add compiler error macro

Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>

* ggml-cpu: add s390x detection in ggml-src

Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>

* ggml-cpu: bring back compile definitions

Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>

* ggml-cpu: undo cmakelists work

Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>

* Revert "ggml-cpu: move s390x typedef to own header file"

This reverts commit 18d79e1a30.

Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>

* ggml-cpu: remove typedefs.h

Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>

* ggml-cpu: remove typedef from cmakelists

Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>

* ggml-cpu: add ggml-impl.h future notes

Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>

* ggml-cpu: add todo comment for future reference

Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>

* ggml-cpu: clarify naming of dlf16

Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>

* ggml-cpu: remove unnecessary target compile definitions

Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>

* ggml-cpu: move nnpa fp16->fp32 and fp32->fp16 to simd-mappings

Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>

* ggml: refactor fp32->fp16 and fp16->fp32 simd to ggml-cpu

Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>

* docs: update broken huggingface link for s390x

Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>

* ggml-cpu: fix duplicate func names during compile

Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>

* Revert "ggml-cpu: fix duplicate func names during compile"

This reverts commit fbb733451f.

Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>

* Revert "ggml: refactor fp32->fp16 and fp16->fp32 simd to ggml-cpu"

This reverts commit bd288e8fa5.

Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>

* ggml: refactor fp16<->fp32 simd to ggml-cpu

Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>

* ggml-cpu: fix missing simd-mappings.h import in quants.c

Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>

* ggml-cpu: fix missing simd-mappings.h within repack

Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>

* ggml-cpu: fix amx mmq missing simd-mappings.h

Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>

* ggml-cpu: attempt at fixing loongarch failing build

Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>

* ggml-cpu: move nnpa together with other fp16<->fp32 simd

Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>

* ggml-cpu: fix wrong refactor of ggml-base

ref: https://github.com/ggml-org/llama.cpp/pull/14317#discussion_r2164176555

Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>

* ggml: remove dependency on ggml-cpu from ggml-base

Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>

* ggml-cpu: rename all fp16<->fp32 macros to prefix with ggml_cpu

ref: https://github.com/ggml-org/llama.cpp/pull/14317#discussion_r2164449406

Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>

* ggml-cpu: remove mistaken fallback macro

fallback logic was already implemented but i was too sleepy to realise

Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>

* ggml: move ggml_table_f32_f16 to ggml-cpu

ref: https://github.com/ggml-org/llama.cpp/pull/14317#discussion_r2164775006

Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>

* ggml-cpu: move ggml_table_f32_f16 back to ggml-base due to ci failures

Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>

* Revert "ggml-cpu: move ggml_table_f32_f16 back to ggml-base due to ci failures"

This reverts commit 32a3533564.

Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>

* Revert "ggml: move ggml_table_f32_f16 to ggml-cpu"

This reverts commit 9e40d984ad.

Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>

* ggml: move ggml_table_f32_f16 to ggml-cpu

ref: https://github.com/ggml-org/llama.cpp/pull/14317#discussion_r2164775006

Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>
(cherry picked from commit 9e40d984ad)

* ggml: move ggml_table_f32_f16 to ggml-cpu.c

Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>

* ggml-cpu: extern c ggml_table_f32_f16 + chore docs

Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>

* ggml-cpu: dedup ggml_table_f32_f16 from simd-mappings.h

we rely on the variable declaration in ggml-cpu.c instead

Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>

* Revert "ggml-cpu: dedup ggml_table_f32_f16 from simd-mappings.h"

This reverts commit f71b21d2f7.

Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>

* ggml-cpu: bring back ggml_table_f32_f16

Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>

* Revert "ggml-cpu: bring back ggml_table_f32_f16"

This reverts commit 2dce119178.

Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>

* fix ggml time initialization

* fix f32_f16 table init

* remove extra line

---------

Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>
Co-authored-by: slaren <slarengh@gmail.com>
This commit is contained in:
Aaron Teo
2025-06-26 05:49:04 +08:00
committed by GitHub
parent b193d53069
commit 60ef23d6c1
29 changed files with 1005 additions and 862 deletions

View File

@@ -3,6 +3,7 @@
#include "ggml-quants.h"
#include "ggml-impl.h"
#include "ggml-cpu.h"
#include "simd-mappings.h"
#include "../../quants.h"
#include "../../ggml-cpu-impl.h"
@@ -62,7 +63,7 @@ void quantize_row_q8_0(const float * GGML_RESTRICT x, void * GGML_RESTRICT vy, i
const float d = amax / ((1 << 7) - 1);
const float id = d ? 1.0f/d : 0.0f;
y[i].d = GGML_FP32_TO_FP16(d);
y[i].d = GGML_CPU_FP32_TO_FP16(d);
for (int j = 0; j < 8; j++) {
const float32x4_t v = vmulq_n_f32(srcv[j], id);
@@ -104,7 +105,7 @@ void quantize_row_q8_1(const float * GGML_RESTRICT x, void * GGML_RESTRICT vy, i
const float d = amax / ((1 << 7) - 1);
const float id = d ? 1.0f/d : 0.0f;
y[i].d = GGML_FP32_TO_FP16(d);
y[i].d = GGML_CPU_FP32_TO_FP16(d);
int32x4_t accv = vdupq_n_s32(0);
@@ -120,7 +121,7 @@ void quantize_row_q8_1(const float * GGML_RESTRICT x, void * GGML_RESTRICT vy, i
accv = vaddq_s32(accv, vi);
}
y[i].s = GGML_FP32_TO_FP16(d * vaddvq_s32(accv));
y[i].s = GGML_CPU_FP32_TO_FP16(d * vaddvq_s32(accv));
}
#else
GGML_UNUSED(nb);
@@ -194,10 +195,10 @@ void ggml_vec_dot_q4_0_q8_0(int n, float * GGML_RESTRICT s, size_t bs, const voi
const int8x16_t y1_h = vld1q_s8(b_y1->qs + 16);
float32_t _scale[4] = {
GGML_FP16_TO_FP32(b_x0->d)*GGML_FP16_TO_FP32(b_y0->d),
GGML_FP16_TO_FP32(b_x0->d)*GGML_FP16_TO_FP32(b_y1->d),
GGML_FP16_TO_FP32(b_x1->d)*GGML_FP16_TO_FP32(b_y0->d),
GGML_FP16_TO_FP32(b_x1->d)*GGML_FP16_TO_FP32(b_y1->d)
GGML_CPU_FP16_TO_FP32(b_x0->d)*GGML_CPU_FP16_TO_FP32(b_y0->d),
GGML_CPU_FP16_TO_FP32(b_x0->d)*GGML_CPU_FP16_TO_FP32(b_y1->d),
GGML_CPU_FP16_TO_FP32(b_x1->d)*GGML_CPU_FP16_TO_FP32(b_y0->d),
GGML_CPU_FP16_TO_FP32(b_x1->d)*GGML_CPU_FP16_TO_FP32(b_y1->d)
};
float32x4_t scale = vld1q_f32(_scale);
@@ -274,10 +275,10 @@ void ggml_vec_dot_q4_0_q8_0(int n, float * GGML_RESTRICT s, size_t bs, const voi
// dot product
sumv0 = svmla_n_f32_x(ph4, sumv0, svcvt_f32_s32_x(ph4, svadd_x(ph4,
svdot_s32(svdup_n_s32(0), qx0ls, qy0l),
svdot_s32(svdup_n_s32(0), qx0hs, qy0h))), GGML_FP16_TO_FP32(x0->d)*GGML_FP16_TO_FP32(y0->d));
svdot_s32(svdup_n_s32(0), qx0hs, qy0h))), GGML_CPU_FP16_TO_FP32(x0->d)*GGML_CPU_FP16_TO_FP32(y0->d));
sumv1 = svmla_n_f32_x(ph4, sumv1, svcvt_f32_s32_x(ph4, svadd_x(ph4,
svdot_s32(svdup_n_s32(0), qx1ls, qy1l),
svdot_s32(svdup_n_s32(0), qx1hs, qy1h))), GGML_FP16_TO_FP32(x1->d)*GGML_FP16_TO_FP32(y1->d));
svdot_s32(svdup_n_s32(0), qx1hs, qy1h))), GGML_CPU_FP16_TO_FP32(x1->d)*GGML_CPU_FP16_TO_FP32(y1->d));
}
sumf = svaddv_f32(svptrue_b32(), svadd_f32_x(svptrue_b32(), sumv0, sumv1));
@@ -313,9 +314,9 @@ void ggml_vec_dot_q4_0_q8_0(int n, float * GGML_RESTRICT s, size_t bs, const voi
// dot product
sumv0 = svmla_n_f32_x(svptrue_b32(), sumv0, svcvt_f32_s32_x(svptrue_b32(),
svdot_s32(svdup_n_s32(0), qx0s, qy0)), GGML_FP16_TO_FP32(x0->d)*GGML_FP16_TO_FP32(y0->d));
svdot_s32(svdup_n_s32(0), qx0s, qy0)), GGML_CPU_FP16_TO_FP32(x0->d)*GGML_CPU_FP16_TO_FP32(y0->d));
sumv1 = svmla_n_f32_x(svptrue_b32(), sumv1, svcvt_f32_s32_x(svptrue_b32(),
svdot_s32(svdup_n_s32(0), qx1s, qy1)), GGML_FP16_TO_FP32(x1->d)*GGML_FP16_TO_FP32(y1->d));
svdot_s32(svdup_n_s32(0), qx1s, qy1)), GGML_CPU_FP16_TO_FP32(x1->d)*GGML_CPU_FP16_TO_FP32(y1->d));
}
sumf = svaddv_f32(svptrue_b32(), svadd_f32_x(svptrue_b32(), sumv0, sumv1));
@@ -354,9 +355,9 @@ void ggml_vec_dot_q4_0_q8_0(int n, float * GGML_RESTRICT s, size_t bs, const voi
// dot product
sumv0 = svmla_n_f32_x(ph32, sumv0, svcvt_f32_s32_x(ph32,
svdot_s32(svdup_n_s32(0), qx0s, qy0)), GGML_FP16_TO_FP32(x0->d)*GGML_FP16_TO_FP32(y0->d));
svdot_s32(svdup_n_s32(0), qx0s, qy0)), GGML_CPU_FP16_TO_FP32(x0->d)*GGML_CPU_FP16_TO_FP32(y0->d));
sumv1 = svmla_n_f32_x(ph32, sumv1, svcvt_f32_s32_x(ph32,
svdot_s32(svdup_n_s32(0), qx1s, qy1)), GGML_FP16_TO_FP32(x1->d)*GGML_FP16_TO_FP32(y1->d));
svdot_s32(svdup_n_s32(0), qx1s, qy1)), GGML_CPU_FP16_TO_FP32(x1->d)*GGML_CPU_FP16_TO_FP32(y1->d));
}
sumf = svaddv_f32(ph32, svadd_f32_x(ph32, sumv0, sumv1));
@@ -404,8 +405,8 @@ void ggml_vec_dot_q4_0_q8_0(int n, float * GGML_RESTRICT s, size_t bs, const voi
const int32x4_t p_0 = ggml_vdotq_s32(ggml_vdotq_s32(vdupq_n_s32(0), v0_0ls, v1_0l), v0_0hs, v1_0h);
const int32x4_t p_1 = ggml_vdotq_s32(ggml_vdotq_s32(vdupq_n_s32(0), v0_1ls, v1_1l), v0_1hs, v1_1h);
sumv0 = vmlaq_n_f32(sumv0, vcvtq_f32_s32(p_0), GGML_FP16_TO_FP32(x0->d)*GGML_FP16_TO_FP32(y0->d));
sumv1 = vmlaq_n_f32(sumv1, vcvtq_f32_s32(p_1), GGML_FP16_TO_FP32(x1->d)*GGML_FP16_TO_FP32(y1->d));
sumv0 = vmlaq_n_f32(sumv0, vcvtq_f32_s32(p_0), GGML_CPU_FP16_TO_FP32(x0->d)*GGML_CPU_FP16_TO_FP32(y0->d));
sumv1 = vmlaq_n_f32(sumv1, vcvtq_f32_s32(p_1), GGML_CPU_FP16_TO_FP32(x1->d)*GGML_CPU_FP16_TO_FP32(y1->d));
}
sumf = vaddvq_f32(sumv0) + vaddvq_f32(sumv1);
@@ -423,7 +424,7 @@ void ggml_vec_dot_q4_0_q8_0(int n, float * GGML_RESTRICT s, size_t bs, const voi
}
int sumi = sumi0 + sumi1;
sumf += sumi*GGML_FP16_TO_FP32(x[ib].d)*GGML_FP16_TO_FP32(y[ib].d);
sumf += sumi*GGML_CPU_FP16_TO_FP32(x[ib].d)*GGML_CPU_FP16_TO_FP32(y[ib].d);
}
*s = sumf;
@@ -464,10 +465,10 @@ void ggml_vec_dot_q4_1_q8_1(int n, float * GGML_RESTRICT s, size_t bs, const voi
const block_q8_1 * GGML_RESTRICT b_y1 = &vy1[i];
float32_t summs_t[4] = {
GGML_FP16_TO_FP32(b_x0->m) * GGML_FP16_TO_FP32(b_y0->s),
GGML_FP16_TO_FP32(b_x1->m) * GGML_FP16_TO_FP32(b_y0->s),
GGML_FP16_TO_FP32(b_x0->m) * GGML_FP16_TO_FP32(b_y1->s),
GGML_FP16_TO_FP32(b_x1->m) * GGML_FP16_TO_FP32(b_y1->s)
GGML_CPU_FP16_TO_FP32(b_x0->m) * GGML_CPU_FP16_TO_FP32(b_y0->s),
GGML_CPU_FP16_TO_FP32(b_x1->m) * GGML_CPU_FP16_TO_FP32(b_y0->s),
GGML_CPU_FP16_TO_FP32(b_x0->m) * GGML_CPU_FP16_TO_FP32(b_y1->s),
GGML_CPU_FP16_TO_FP32(b_x1->m) * GGML_CPU_FP16_TO_FP32(b_y1->s)
};
summs0 = vaddq_f32(summs0, vld1q_f32(summs_t));
@@ -490,10 +491,10 @@ void ggml_vec_dot_q4_1_q8_1(int n, float * GGML_RESTRICT s, size_t bs, const voi
// mmla into int32x4_t
float32_t _scale[4] = {
GGML_FP16_TO_FP32(b_x0->d)*GGML_FP16_TO_FP32(b_y0->d),
GGML_FP16_TO_FP32(b_x0->d)*GGML_FP16_TO_FP32(b_y1->d),
GGML_FP16_TO_FP32(b_x1->d)*GGML_FP16_TO_FP32(b_y0->d),
GGML_FP16_TO_FP32(b_x1->d)*GGML_FP16_TO_FP32(b_y1->d)
GGML_CPU_FP16_TO_FP32(b_x0->d)*GGML_CPU_FP16_TO_FP32(b_y0->d),
GGML_CPU_FP16_TO_FP32(b_x0->d)*GGML_CPU_FP16_TO_FP32(b_y1->d),
GGML_CPU_FP16_TO_FP32(b_x1->d)*GGML_CPU_FP16_TO_FP32(b_y0->d),
GGML_CPU_FP16_TO_FP32(b_x1->d)*GGML_CPU_FP16_TO_FP32(b_y1->d)
};
float32x4_t scale = vld1q_f32(_scale);
@@ -539,7 +540,7 @@ void ggml_vec_dot_q4_1_q8_1(int n, float * GGML_RESTRICT s, size_t bs, const voi
const block_q8_1 * GGML_RESTRICT y0 = &y[ib + 0];
const block_q8_1 * GGML_RESTRICT y1 = &y[ib + 1];
summs += GGML_FP16_TO_FP32(x0->m) * GGML_FP16_TO_FP32(y0->s) + GGML_FP16_TO_FP32(x1->m) * GGML_FP16_TO_FP32(y1->s);
summs += GGML_CPU_FP16_TO_FP32(x0->m) * GGML_CPU_FP16_TO_FP32(y0->s) + GGML_CPU_FP16_TO_FP32(x1->m) * GGML_CPU_FP16_TO_FP32(y1->s);
const uint8x16_t m4b = vdupq_n_u8(0x0F);
@@ -562,8 +563,8 @@ void ggml_vec_dot_q4_1_q8_1(int n, float * GGML_RESTRICT s, size_t bs, const voi
const int32x4_t p_0 = ggml_vdotq_s32(ggml_vdotq_s32(vdupq_n_s32(0), v0_0l, v1_0l), v0_0h, v1_0h);
const int32x4_t p_1 = ggml_vdotq_s32(ggml_vdotq_s32(vdupq_n_s32(0), v0_1l, v1_1l), v0_1h, v1_1h);
sumv0 = vmlaq_n_f32(sumv0, vcvtq_f32_s32(p_0), GGML_FP16_TO_FP32(x0->d)*GGML_FP16_TO_FP32(y0->d));
sumv1 = vmlaq_n_f32(sumv1, vcvtq_f32_s32(p_1), GGML_FP16_TO_FP32(x1->d)*GGML_FP16_TO_FP32(y1->d));
sumv0 = vmlaq_n_f32(sumv0, vcvtq_f32_s32(p_0), GGML_CPU_FP16_TO_FP32(x0->d)*GGML_CPU_FP16_TO_FP32(y0->d));
sumv1 = vmlaq_n_f32(sumv1, vcvtq_f32_s32(p_1), GGML_CPU_FP16_TO_FP32(x1->d)*GGML_CPU_FP16_TO_FP32(y1->d));
}
sumf = vaddvq_f32(sumv0) + vaddvq_f32(sumv1) + summs;
@@ -582,7 +583,7 @@ void ggml_vec_dot_q4_1_q8_1(int n, float * GGML_RESTRICT s, size_t bs, const voi
}
int sumi = sumi0 + sumi1;
sumf += (GGML_FP16_TO_FP32(x[ib].d)*GGML_FP16_TO_FP32(y[ib].d))*sumi + GGML_FP16_TO_FP32(x[ib].m)*GGML_FP16_TO_FP32(y[ib].s);
sumf += (GGML_CPU_FP16_TO_FP32(x[ib].d)*GGML_CPU_FP16_TO_FP32(y[ib].d))*sumi + GGML_CPU_FP16_TO_FP32(x[ib].m)*GGML_CPU_FP16_TO_FP32(y[ib].s);
}
*s = sumf;
@@ -666,10 +667,10 @@ void ggml_vec_dot_q5_0_q8_0(int n, float * GGML_RESTRICT s, size_t bs, const voi
sumv0 = vmlaq_n_f32(sumv0, vcvtq_f32_s32(vaddq_s32(
ggml_vdotq_s32(vdupq_n_s32(0), v0_0lf, v1_0l),
ggml_vdotq_s32(vdupq_n_s32(0), v0_0hf, v1_0h))), GGML_FP16_TO_FP32(x0->d)*GGML_FP16_TO_FP32(y0->d));
ggml_vdotq_s32(vdupq_n_s32(0), v0_0hf, v1_0h))), GGML_CPU_FP16_TO_FP32(x0->d)*GGML_CPU_FP16_TO_FP32(y0->d));
sumv1 = vmlaq_n_f32(sumv1, vcvtq_f32_s32(vaddq_s32(
ggml_vdotq_s32(vdupq_n_s32(0), v0_1lf, v1_1l),
ggml_vdotq_s32(vdupq_n_s32(0), v0_1hf, v1_1h))), GGML_FP16_TO_FP32(x1->d)*GGML_FP16_TO_FP32(y1->d));
ggml_vdotq_s32(vdupq_n_s32(0), v0_1hf, v1_1h))), GGML_CPU_FP16_TO_FP32(x1->d)*GGML_CPU_FP16_TO_FP32(y1->d));
}
sumf = vaddvq_f32(sumv0) + vaddvq_f32(sumv1);
@@ -694,7 +695,7 @@ void ggml_vec_dot_q5_0_q8_0(int n, float * GGML_RESTRICT s, size_t bs, const voi
}
int sumi = sumi0 + sumi1;
sumf += (GGML_FP16_TO_FP32(x[ib].d)*GGML_FP16_TO_FP32(y[ib].d)) * sumi;
sumf += (GGML_CPU_FP16_TO_FP32(x[ib].d)*GGML_CPU_FP16_TO_FP32(y[ib].d)) * sumi;
}
*s = sumf;
@@ -739,8 +740,8 @@ void ggml_vec_dot_q5_1_q8_1(int n, float * GGML_RESTRICT s, size_t bs, const voi
const uint8x16_t m4b = vdupq_n_u8(0x0F);
summs0 += GGML_FP16_TO_FP32(x0->m) * GGML_FP16_TO_FP32(y0->s);
summs1 += GGML_FP16_TO_FP32(x1->m) * GGML_FP16_TO_FP32(y1->s);
summs0 += GGML_CPU_FP16_TO_FP32(x0->m) * GGML_CPU_FP16_TO_FP32(y0->s);
summs1 += GGML_CPU_FP16_TO_FP32(x1->m) * GGML_CPU_FP16_TO_FP32(y1->s);
// extract the 5th bit via lookup table ((b) << 4)
memcpy(&qh0, x0->qh, sizeof(qh0));
@@ -784,10 +785,10 @@ void ggml_vec_dot_q5_1_q8_1(int n, float * GGML_RESTRICT s, size_t bs, const voi
sumv0 = vmlaq_n_f32(sumv0, vcvtq_f32_s32(vaddq_s32(
ggml_vdotq_s32(vdupq_n_s32(0), v0_0lf, v1_0l),
ggml_vdotq_s32(vdupq_n_s32(0), v0_0hf, v1_0h))), GGML_FP16_TO_FP32(x0->d)*GGML_FP16_TO_FP32(y0->d));
ggml_vdotq_s32(vdupq_n_s32(0), v0_0hf, v1_0h))), GGML_CPU_FP16_TO_FP32(x0->d)*GGML_CPU_FP16_TO_FP32(y0->d));
sumv1 = vmlaq_n_f32(sumv1, vcvtq_f32_s32(vaddq_s32(
ggml_vdotq_s32(vdupq_n_s32(0), v0_1lf, v1_1l),
ggml_vdotq_s32(vdupq_n_s32(0), v0_1hf, v1_1h))), GGML_FP16_TO_FP32(x1->d)*GGML_FP16_TO_FP32(y1->d));
ggml_vdotq_s32(vdupq_n_s32(0), v0_1hf, v1_1h))), GGML_CPU_FP16_TO_FP32(x1->d)*GGML_CPU_FP16_TO_FP32(y1->d));
}
sumf = vaddvq_f32(sumv0) + vaddvq_f32(sumv1) + summs0 + summs1;
@@ -812,7 +813,7 @@ void ggml_vec_dot_q5_1_q8_1(int n, float * GGML_RESTRICT s, size_t bs, const voi
}
int sumi = sumi0 + sumi1;
sumf += (GGML_FP16_TO_FP32(x[ib].d)*GGML_FP16_TO_FP32(y[ib].d))*sumi + GGML_FP16_TO_FP32(x[ib].m)*GGML_FP16_TO_FP32(y[ib].s);
sumf += (GGML_CPU_FP16_TO_FP32(x[ib].d)*GGML_CPU_FP16_TO_FP32(y[ib].d))*sumi + GGML_CPU_FP16_TO_FP32(x[ib].m)*GGML_CPU_FP16_TO_FP32(y[ib].s);
}
*s = sumf;
@@ -864,10 +865,10 @@ void ggml_vec_dot_q8_0_q8_0(int n, float * GGML_RESTRICT s, size_t bs, const voi
const int8x16_t y1_h = vld1q_s8(b_y1->qs + 16);
float32_t _scale[4] = {
GGML_FP16_TO_FP32(b_x0->d)*GGML_FP16_TO_FP32(b_y0->d),
GGML_FP16_TO_FP32(b_x0->d)*GGML_FP16_TO_FP32(b_y1->d),
GGML_FP16_TO_FP32(b_x1->d)*GGML_FP16_TO_FP32(b_y0->d),
GGML_FP16_TO_FP32(b_x1->d)*GGML_FP16_TO_FP32(b_y1->d)
GGML_CPU_FP16_TO_FP32(b_x0->d)*GGML_CPU_FP16_TO_FP32(b_y0->d),
GGML_CPU_FP16_TO_FP32(b_x0->d)*GGML_CPU_FP16_TO_FP32(b_y1->d),
GGML_CPU_FP16_TO_FP32(b_x1->d)*GGML_CPU_FP16_TO_FP32(b_y0->d),
GGML_CPU_FP16_TO_FP32(b_x1->d)*GGML_CPU_FP16_TO_FP32(b_y1->d)
};
float32x4_t scale = vld1q_f32(_scale);
@@ -934,10 +935,10 @@ void ggml_vec_dot_q8_0_q8_0(int n, float * GGML_RESTRICT s, size_t bs, const voi
sumv0 = svmla_n_f32_x(pl16, sumv0, svcvt_f32_s32_x(pl16, svadd_x(pl16,
svdot_s32(svdup_n_s32(0), qx0_0, qy0_0),
svdot_s32(svdup_n_s32(0), qx0_1, qy0_1))), GGML_FP16_TO_FP32(x0->d)*GGML_FP16_TO_FP32(y0->d));
svdot_s32(svdup_n_s32(0), qx0_1, qy0_1))), GGML_CPU_FP16_TO_FP32(x0->d)*GGML_CPU_FP16_TO_FP32(y0->d));
sumv1 = svmla_n_f32_x(pl16, sumv1, svcvt_f32_s32_x(pl16, svadd_x(pl16,
svdot_s32(svdup_n_s32(0), qx1_0, qy1_0),
svdot_s32(svdup_n_s32(0), qx1_1, qy1_1))), GGML_FP16_TO_FP32(x1->d)*GGML_FP16_TO_FP32(y1->d));
svdot_s32(svdup_n_s32(0), qx1_1, qy1_1))), GGML_CPU_FP16_TO_FP32(x1->d)*GGML_CPU_FP16_TO_FP32(y1->d));
}
sumf = svaddv_f32(pl16, svadd_f32_x(pl16, sumv0, sumv1));
@@ -960,9 +961,9 @@ void ggml_vec_dot_q8_0_q8_0(int n, float * GGML_RESTRICT s, size_t bs, const voi
const svint8_t qy1 = svld1_s8(svptrue_b8(), y1->qs);
sumv0 = svmla_n_f32_x(svptrue_b32(), sumv0, svcvt_f32_s32_x(svptrue_b32(),
svdot_s32(svdup_n_s32(0), qx0, qy0)), GGML_FP16_TO_FP32(x0->d)*GGML_FP16_TO_FP32(y0->d));
svdot_s32(svdup_n_s32(0), qx0, qy0)), GGML_CPU_FP16_TO_FP32(x0->d)*GGML_CPU_FP16_TO_FP32(y0->d));
sumv1 = svmla_n_f32_x(svptrue_b32(), sumv1, svcvt_f32_s32_x(svptrue_b32(),
svdot_s32(svdup_n_s32(0), qx1, qy1)), GGML_FP16_TO_FP32(x1->d)*GGML_FP16_TO_FP32(y1->d));
svdot_s32(svdup_n_s32(0), qx1, qy1)), GGML_CPU_FP16_TO_FP32(x1->d)*GGML_CPU_FP16_TO_FP32(y1->d));
}
sumf = svaddv_f32(svptrue_b32(), svadd_f32_x(svptrue_b32(), sumv0, sumv1));
@@ -1002,8 +1003,8 @@ void ggml_vec_dot_q8_0_q8_0(int n, float * GGML_RESTRICT s, size_t bs, const voi
qy_64 = svadd_s8_x(svptrue_b8(), qy_32, qy_64);
// scale creation
const float32_t deq1 = GGML_FP16_TO_FP32(x0->d)*GGML_FP16_TO_FP32(y0->d);
const float32_t deq2 = GGML_FP16_TO_FP32(x1->d)*GGML_FP16_TO_FP32(y1->d);
const float32_t deq1 = GGML_CPU_FP16_TO_FP32(x0->d)*GGML_CPU_FP16_TO_FP32(y0->d);
const float32_t deq2 = GGML_CPU_FP16_TO_FP32(x1->d)*GGML_CPU_FP16_TO_FP32(y1->d);
// duplicate deq1 in first half of vector and deq2 in second half of vector
const svfloat32_t temp = svdup_f32_m(svdup_f32_z(ph8, deq1), pl8, deq2);
@@ -1043,11 +1044,11 @@ void ggml_vec_dot_q8_0_q8_0(int n, float * GGML_RESTRICT s, size_t bs, const voi
sumv0 = vmlaq_n_f32(sumv0, vcvtq_f32_s32(vaddq_s32(
ggml_vdotq_s32(vdupq_n_s32(0), x0_0, y0_0),
ggml_vdotq_s32(vdupq_n_s32(0), x0_1, y0_1))), GGML_FP16_TO_FP32(x0->d)*GGML_FP16_TO_FP32(y0->d));
ggml_vdotq_s32(vdupq_n_s32(0), x0_1, y0_1))), GGML_CPU_FP16_TO_FP32(x0->d)*GGML_CPU_FP16_TO_FP32(y0->d));
sumv1 = vmlaq_n_f32(sumv1, vcvtq_f32_s32(vaddq_s32(
ggml_vdotq_s32(vdupq_n_s32(0), x1_0, y1_0),
ggml_vdotq_s32(vdupq_n_s32(0), x1_1, y1_1))), GGML_FP16_TO_FP32(x1->d)*GGML_FP16_TO_FP32(y1->d));
ggml_vdotq_s32(vdupq_n_s32(0), x1_1, y1_1))), GGML_CPU_FP16_TO_FP32(x1->d)*GGML_CPU_FP16_TO_FP32(y1->d));
}
sumf = vaddvq_f32(sumv0) + vaddvq_f32(sumv1);
@@ -1059,7 +1060,7 @@ void ggml_vec_dot_q8_0_q8_0(int n, float * GGML_RESTRICT s, size_t bs, const voi
sumi += x[ib].qs[j]*y[ib].qs[j];
}
sumf += sumi*(GGML_FP16_TO_FP32(x[ib].d)*GGML_FP16_TO_FP32(y[ib].d));
sumf += sumi*(GGML_CPU_FP16_TO_FP32(x[ib].d)*GGML_CPU_FP16_TO_FP32(y[ib].d));
}
*s = sumf;
@@ -1217,7 +1218,7 @@ void ggml_vec_dot_tq1_0_q8_K(int n, float * GGML_RESTRICT s, size_t bs, const vo
const int16x8_t ysum0 = vld1q_s16(y[i].bsums);
const int16x8_t ysum1 = vld1q_s16(y[i].bsums + 8);
const float d = GGML_FP16_TO_FP32(x[i].d) * y[i].d;
const float d = GGML_CPU_FP16_TO_FP32(x[i].d) * y[i].d;
#if defined(__ARM_FEATURE_DOTPROD)
sumi0 = vaddq_s32(sumi0, sumi1);
@@ -1269,7 +1270,7 @@ void ggml_vec_dot_tq1_0_q8_K(int n, float * GGML_RESTRICT s, size_t bs, const vo
}
}
sumf += (float) sum * (GGML_FP16_TO_FP32(x[i].d) * y[i].d);
sumf += (float) sum * (GGML_CPU_FP16_TO_FP32(x[i].d) * y[i].d);
}
*s = sumf;
@@ -1362,7 +1363,7 @@ void ggml_vec_dot_tq2_0_q8_K(int n, float * GGML_RESTRICT s, size_t bs, const vo
const int16x8_t ysum0 = vld1q_s16(y[i].bsums);
const int16x8_t ysum1 = vld1q_s16(y[i].bsums + 8);
const float d = GGML_FP16_TO_FP32(x[i].d) * y[i].d;
const float d = GGML_CPU_FP16_TO_FP32(x[i].d) * y[i].d;
#if defined(__ARM_FEATURE_DOTPROD)
sumi0 = vaddq_s32(sumi0, sumi1);
@@ -1393,7 +1394,7 @@ void ggml_vec_dot_tq2_0_q8_K(int n, float * GGML_RESTRICT s, size_t bs, const vo
}
}
const float d = y[i].d * GGML_FP16_TO_FP32(x[i].d);
const float d = y[i].d * GGML_CPU_FP16_TO_FP32(x[i].d);
sumf += (float) sumi * d;
}
@@ -1425,9 +1426,9 @@ void ggml_vec_dot_q2_K_q8_K(int n, float * GGML_RESTRICT s, size_t bs, const voi
switch (vector_length) {
case 128:
for (int i = 0; i < nb; ++i) {
const float d = y[i].d * GGML_FP16_TO_FP32(x[i].d);
const float d = y[i].d * GGML_CPU_FP16_TO_FP32(x[i].d);
svfloat32_t d_broad = svdup_n_f32((float32_t)d);
const float dmin = -y[i].d * GGML_FP16_TO_FP32(x[i].dmin);
const float dmin = -y[i].d * GGML_CPU_FP16_TO_FP32(x[i].dmin);
svfloat32_t dmin_broad = svdup_n_f32((float32_t)dmin);
const uint8_t * GGML_RESTRICT q2 = x[i].qs;
@@ -1570,9 +1571,9 @@ void ggml_vec_dot_q2_K_q8_K(int n, float * GGML_RESTRICT s, size_t bs, const voi
case 256:
case 512:
for (int i = 0; i < nb; ++i) {
const float d = y[i].d * GGML_FP16_TO_FP32(x[i].d);
const float d = y[i].d * GGML_CPU_FP16_TO_FP32(x[i].d);
svfloat32_t d_broad = svdup_n_f32((float32_t)d);
const float dmin = -y[i].d * GGML_FP16_TO_FP32(x[i].dmin);
const float dmin = -y[i].d * GGML_CPU_FP16_TO_FP32(x[i].dmin);
svfloat32_t dmin_broad = svdup_n_f32((float32_t)dmin);
const uint8_t * GGML_RESTRICT q2 = x[i].qs;
@@ -1671,8 +1672,8 @@ void ggml_vec_dot_q2_K_q8_K(int n, float * GGML_RESTRICT s, size_t bs, const voi
float sum = 0;
for (int i = 0; i < nb; ++i) {
const float d = y[i].d * GGML_FP16_TO_FP32(x[i].d);
const float dmin = -y[i].d * GGML_FP16_TO_FP32(x[i].dmin);
const float d = y[i].d * GGML_CPU_FP16_TO_FP32(x[i].d);
const float dmin = -y[i].d * GGML_CPU_FP16_TO_FP32(x[i].dmin);
const uint8_t * GGML_RESTRICT q2 = x[i].qs;
const int8_t * GGML_RESTRICT q8 = y[i].qs;
@@ -1742,8 +1743,8 @@ void ggml_vec_dot_q2_K_q8_K(int n, float * GGML_RESTRICT s, size_t bs, const voi
summs += y[i].bsums[j] * (sc[j] >> 4);
}
const float dall = y[i].d * GGML_FP16_TO_FP32(x[i].d);
const float dmin = y[i].d * GGML_FP16_TO_FP32(x[i].dmin);
const float dall = y[i].d * GGML_CPU_FP16_TO_FP32(x[i].d);
const float dmin = y[i].d * GGML_CPU_FP16_TO_FP32(x[i].dmin);
int isum = 0;
int is = 0;
@@ -1805,7 +1806,7 @@ void ggml_vec_dot_q3_K_q8_K(int n, float * GGML_RESTRICT s, size_t bs, const voi
for (int i = 0; i < nb; ++i) {
const float d = y[i].d * GGML_FP16_TO_FP32(x[i].d);
const float d = y[i].d * GGML_CPU_FP16_TO_FP32(x[i].d);
const uint8_t * GGML_RESTRICT q3_sv = x[i].qs;
const uint8_t * GGML_RESTRICT qh_sv = x[i].hmask;
@@ -1981,7 +1982,7 @@ void ggml_vec_dot_q3_K_q8_K(int n, float * GGML_RESTRICT s, size_t bs, const voi
for (int i = 0; i < nb; ++i) {
const float d = y[i].d * GGML_FP16_TO_FP32(x[i].d);
const float d = y[i].d * GGML_CPU_FP16_TO_FP32(x[i].d);
const uint8_t * GGML_RESTRICT q3 = x[i].qs;
const uint8_t * GGML_RESTRICT qh = x[i].hmask;
@@ -2112,7 +2113,7 @@ void ggml_vec_dot_q3_K_q8_K(int n, float * GGML_RESTRICT s, size_t bs, const voi
for (int l = 0; l < 8; ++l) aux32[l] += (scales[j] - 32) * aux16[l];
q8 += 8; a += 8;
}
const float d = GGML_FP16_TO_FP32(x[i].d) * y[i].d;
const float d = GGML_CPU_FP16_TO_FP32(x[i].d) * y[i].d;
for (int l = 0; l < 8; ++l) sums[l] += d * aux32[l];
}
for (int l = 0; l < 8; ++l) sumf += sums[l];
@@ -2258,18 +2259,18 @@ void ggml_vec_dot_q4_K_q8_K(int n, float * GGML_RESTRICT s, size_t bs, const voi
bias[3] = vaddvq_s32(vaddq_s32(vmull_s16(vget_low_s16(y1_sums), vget_low_s16(x1_mins)),
vmull_s16(vget_high_s16(y1_sums), vget_high_s16(x1_mins))));
const float32x4_t dmins = {
GGML_FP16_TO_FP32(x0->dmin) * y0->d,
GGML_FP16_TO_FP32(x0->dmin) * y1->d,
GGML_FP16_TO_FP32(x1->dmin) * y0->d,
GGML_FP16_TO_FP32(x1->dmin) * y1->d,
GGML_CPU_FP16_TO_FP32(x0->dmin) * y0->d,
GGML_CPU_FP16_TO_FP32(x0->dmin) * y1->d,
GGML_CPU_FP16_TO_FP32(x1->dmin) * y0->d,
GGML_CPU_FP16_TO_FP32(x1->dmin) * y1->d,
};
vfsum = vmlsq_f32(vfsum, vcvtq_f32_s32(vld1q_s32(bias)), dmins);
const float32x4_t superblock_scale = {
GGML_FP16_TO_FP32(x0->d) * y0->d,
GGML_FP16_TO_FP32(x0->d) * y1->d,
GGML_FP16_TO_FP32(x1->d) * y0->d,
GGML_FP16_TO_FP32(x1->d) * y1->d,
GGML_CPU_FP16_TO_FP32(x0->d) * y0->d,
GGML_CPU_FP16_TO_FP32(x0->d) * y1->d,
GGML_CPU_FP16_TO_FP32(x1->d) * y0->d,
GGML_CPU_FP16_TO_FP32(x1->d) * y1->d,
};
vfsum = vmlaq_f32(vfsum, vcvtq_f32_s32(visum), superblock_scale);
}
@@ -2289,8 +2290,8 @@ void ggml_vec_dot_q4_K_q8_K(int n, float * GGML_RESTRICT s, size_t bs, const voi
float sumf = 0;
for (int i = 0; i < nb; ++i) {
const float d = y[i].d * GGML_FP16_TO_FP32(x[i].d);
const float dmin = y[i].d * GGML_FP16_TO_FP32(x[i].dmin);
const float d = y[i].d * GGML_CPU_FP16_TO_FP32(x[i].d);
const float dmin = y[i].d * GGML_CPU_FP16_TO_FP32(x[i].dmin);
const int16x8_t q8sums = vpaddq_s16(vld1q_s16(y[i].bsums), vld1q_s16(y[i].bsums + 8));
@@ -2377,8 +2378,8 @@ void ggml_vec_dot_q4_K_q8_K(int n, float * GGML_RESTRICT s, size_t bs, const voi
for (int i = 0; i < nb; ++i) {
const float d = y[i].d * GGML_FP16_TO_FP32(x[i].d);
const float dmin = y[i].d * GGML_FP16_TO_FP32(x[i].dmin);
const float d = y[i].d * GGML_CPU_FP16_TO_FP32(x[i].d);
const float dmin = y[i].d * GGML_CPU_FP16_TO_FP32(x[i].dmin);
const int16x8_t q8sums = vpaddq_s16(vld1q_s16(y[i].bsums), vld1q_s16(y[i].bsums + 8));
@@ -2478,9 +2479,9 @@ void ggml_vec_dot_q4_K_q8_K(int n, float * GGML_RESTRICT s, size_t bs, const voi
for (int l = 0; l < 8; ++l) aux32[l] += scale * aux16[l];
q8 += 8; a += 8;
}
const float d = GGML_FP16_TO_FP32(x[i].d) * y[i].d;
const float d = GGML_CPU_FP16_TO_FP32(x[i].d) * y[i].d;
for (int l = 0; l < 8; ++l) sums[l] += d * aux32[l];
const float dmin = GGML_FP16_TO_FP32(x[i].dmin) * y[i].d;
const float dmin = GGML_CPU_FP16_TO_FP32(x[i].dmin) * y[i].d;
sumf -= dmin * sumi;
}
for (int l = 0; l < 8; ++l) sumf += sums[l];
@@ -2520,8 +2521,8 @@ void ggml_vec_dot_q5_K_q8_K(int n, float * GGML_RESTRICT s, size_t bs, const voi
for (int i = 0; i < nb; ++i) {
const float d = y[i].d * GGML_FP16_TO_FP32(x[i].d);
const float dmin = y[i].d * GGML_FP16_TO_FP32(x[i].dmin);
const float d = y[i].d * GGML_CPU_FP16_TO_FP32(x[i].d);
const float dmin = y[i].d * GGML_CPU_FP16_TO_FP32(x[i].dmin);
const int16x8_t q8sums = vpaddq_s16(vld1q_s16(y[i].bsums), vld1q_s16(y[i].bsums + 8));
@@ -2630,9 +2631,9 @@ void ggml_vec_dot_q5_K_q8_K(int n, float * GGML_RESTRICT s, size_t bs, const voi
for (int l = 0; l < 8; ++l) aux32[l] += scale * aux16[l];
q8 += 8; a += 8;
}
const float d = GGML_FP16_TO_FP32(x[i].d) * y[i].d;
const float d = GGML_CPU_FP16_TO_FP32(x[i].d) * y[i].d;
for (int l = 0; l < 8; ++l) sums[l] += d * aux32[l];
const float dmin = GGML_FP16_TO_FP32(x[i].dmin) * y[i].d;
const float dmin = GGML_CPU_FP16_TO_FP32(x[i].dmin) * y[i].d;
sumf -= dmin * sumi;
}
for (int l = 0; l < 8; ++l) sumf += sums[l];
@@ -2827,10 +2828,10 @@ void ggml_vec_dot_q6_K_q8_K(int n, float * GGML_RESTRICT s, size_t bs, const voi
const int32x4_t vibias = vmulq_n_s32(vld1q_s32(bias), 32);
const float32x4_t superblock_scale = {
GGML_FP16_TO_FP32(x0->d) * y0->d,
GGML_FP16_TO_FP32(x0->d) * y1->d,
GGML_FP16_TO_FP32(x1->d) * y0->d,
GGML_FP16_TO_FP32(x1->d) * y1->d,
GGML_CPU_FP16_TO_FP32(x0->d) * y0->d,
GGML_CPU_FP16_TO_FP32(x0->d) * y1->d,
GGML_CPU_FP16_TO_FP32(x1->d) * y0->d,
GGML_CPU_FP16_TO_FP32(x1->d) * y1->d,
};
visum = vsubq_s32(visum, vibias);
@@ -2858,7 +2859,7 @@ void ggml_vec_dot_q6_K_q8_K(int n, float * GGML_RESTRICT s, size_t bs, const voi
svuint8_t q6h_1, q6h_2, q6h_3, q6h_4;
for (int i = 0; i < nb; ++i) {
const float d_all = GGML_FP16_TO_FP32(x[i].d);
const float d_all = GGML_CPU_FP16_TO_FP32(x[i].d);
const uint8_t * GGML_RESTRICT q6 = x[i].ql;
const uint8_t * GGML_RESTRICT qh = x[i].qh;
@@ -3011,7 +3012,7 @@ void ggml_vec_dot_q6_K_q8_K(int n, float * GGML_RESTRICT s, size_t bs, const voi
for (int i = 0; i < nb; ++i) {
const float d_all = GGML_FP16_TO_FP32(x[i].d);
const float d_all = GGML_CPU_FP16_TO_FP32(x[i].d);
const uint8_t * GGML_RESTRICT q6 = x[i].ql;
const uint8_t * GGML_RESTRICT qh = x[i].qh;
@@ -3128,7 +3129,7 @@ void ggml_vec_dot_q6_K_q8_K(int n, float * GGML_RESTRICT s, size_t bs, const voi
for (int l = 0; l < 8; ++l) aux32[l] += scale * aux16[l];
q8 += 8; a += 8;
}
const float d = GGML_FP16_TO_FP32(x[i].d) * y[i].d;
const float d = GGML_CPU_FP16_TO_FP32(x[i].d) * y[i].d;
for (int l = 0; l < 8; ++l) sums[l] += d * aux32[l];
}
for (int l = 0; l < 8; ++l) sumf += sums[l];
@@ -3199,7 +3200,7 @@ void ggml_vec_dot_iq2_xxs_q8_K(int n, float * GGML_RESTRICT s, size_t bs, const
float sumf = 0;
for (int i = 0; i < nb; ++i) {
const float d = GGML_FP16_TO_FP32(x[i].d) * y[i].d;
const float d = GGML_CPU_FP16_TO_FP32(x[i].d) * y[i].d;
const uint16_t * GGML_RESTRICT q2 = x[i].qs;
const int8_t * GGML_RESTRICT q8 = y[i].qs;
float sumf1 = 0, sumf2 = 0;
@@ -3234,7 +3235,7 @@ void ggml_vec_dot_iq2_xxs_q8_K(int n, float * GGML_RESTRICT s, size_t bs, const
float sumf = 0.f;
for (int i = 0; i < nb; ++i) {
const float d = GGML_FP16_TO_FP32(x[i].d) * y[i].d;
const float d = GGML_CPU_FP16_TO_FP32(x[i].d) * y[i].d;
const uint16_t * GGML_RESTRICT q2 = x[i].qs;
const int8_t * GGML_RESTRICT q8 = y[i].qs;
int32_t bsum = 0;
@@ -3284,7 +3285,7 @@ void ggml_vec_dot_iq2_xs_q8_K(int n, float * GGML_RESTRICT s, size_t bs, const v
float sumf = 0;
for (int i = 0; i < nb; ++i) {
const float d = GGML_FP16_TO_FP32(x[i].d) * y[i].d;
const float d = GGML_CPU_FP16_TO_FP32(x[i].d) * y[i].d;
const uint16_t * GGML_RESTRICT q2 = x[i].qs;
const int8_t * GGML_RESTRICT q8 = y[i].qs;
const uint8x8_t scales8 = vld1_u8(x[i].scales);
@@ -3329,7 +3330,7 @@ void ggml_vec_dot_iq2_xs_q8_K(int n, float * GGML_RESTRICT s, size_t bs, const v
float sumf = 0.f;
for (int i = 0; i < nb; ++i) {
const float d = GGML_FP16_TO_FP32(x[i].d) * y[i].d;
const float d = GGML_CPU_FP16_TO_FP32(x[i].d) * y[i].d;
const uint16_t * GGML_RESTRICT q2 = x[i].qs;
const uint8_t * GGML_RESTRICT sc = x[i].scales;
const int8_t * GGML_RESTRICT q8 = y[i].qs;
@@ -3398,7 +3399,7 @@ void ggml_vec_dot_iq2_s_q8_K(int n, float * GGML_RESTRICT s, size_t bs, const vo
float sumf = 0;
for (int i = 0; i < nb; ++i) {
const float d = GGML_FP16_TO_FP32(x[i].d) * y[i].d;
const float d = GGML_CPU_FP16_TO_FP32(x[i].d) * y[i].d;
const uint8_t * GGML_RESTRICT qs = x[i].qs;
const uint8_t * GGML_RESTRICT qh = x[i].qh;
@@ -3458,7 +3459,7 @@ void ggml_vec_dot_iq2_s_q8_K(int n, float * GGML_RESTRICT s, size_t bs, const vo
float sumf = 0;
for (int i = 0; i < nb; i++) {
const float d = GGML_FP16_TO_FP32(x[i].d) * y[i].d;
const float d = GGML_CPU_FP16_TO_FP32(x[i].d) * y[i].d;
const int8_t * q8 = y[i].qs;
const uint8_t * qs = x[i].qs;
const uint8_t * qh = x[i].qh;
@@ -3521,7 +3522,7 @@ void ggml_vec_dot_iq3_xxs_q8_K(int n, float * GGML_RESTRICT s, size_t bs, const
float sumf = 0;
for (int i = 0; i < nb; ++i) {
const float d = GGML_FP16_TO_FP32(x[i].d) * y[i].d;
const float d = GGML_CPU_FP16_TO_FP32(x[i].d) * y[i].d;
const uint8_t * GGML_RESTRICT q3 = x[i].qs;
const uint8_t * GGML_RESTRICT gas = x[i].qs + QK_K/4;
const int8_t * GGML_RESTRICT q8 = y[i].qs;
@@ -3557,7 +3558,7 @@ void ggml_vec_dot_iq3_xxs_q8_K(int n, float * GGML_RESTRICT s, size_t bs, const
float sumf = 0.f;
for (int i = 0; i < nb; ++i) {
const float d = GGML_FP16_TO_FP32(x[i].d) * y[i].d;
const float d = GGML_CPU_FP16_TO_FP32(x[i].d) * y[i].d;
const uint8_t * GGML_RESTRICT q3 = x[i].qs;
const uint8_t * GGML_RESTRICT gas = x[i].qs + QK_K/4;
const int8_t * GGML_RESTRICT q8 = y[i].qs;
@@ -3630,7 +3631,7 @@ void ggml_vec_dot_iq3_s_q8_K(int n, float * GGML_RESTRICT s, size_t bs, const vo
float sumf = 0;
for (int i = 0; i < nb; ++i) {
const float d = GGML_FP16_TO_FP32(x[i].d) * y[i].d;
const float d = GGML_CPU_FP16_TO_FP32(x[i].d) * y[i].d;
const uint8_t * GGML_RESTRICT qs = x[i].qs;
const uint8_t * GGML_RESTRICT qh = x[i].qh;
const uint16_t * GGML_RESTRICT signs = (const uint16_t *)x[i].signs;
@@ -3691,7 +3692,7 @@ void ggml_vec_dot_iq3_s_q8_K(int n, float * GGML_RESTRICT s, size_t bs, const vo
float sumf = 0.f;
for (int i = 0; i < nb; ++i) {
const float d = GGML_FP16_TO_FP32(x[i].d) * y[i].d;
const float d = GGML_CPU_FP16_TO_FP32(x[i].d) * y[i].d;
const uint8_t * GGML_RESTRICT qs = x[i].qs;
const uint8_t * GGML_RESTRICT qh = x[i].qh;
const uint8_t * GGML_RESTRICT signs = x[i].signs;
@@ -3786,7 +3787,7 @@ void ggml_vec_dot_iq1_s_q8_K(int n, float * GGML_RESTRICT s, size_t bs, const vo
}
sumf += y[i].d * GGML_FP16_TO_FP32(x[i].d) * (sumi1 + sumi2 + IQ1S_DELTA * sumi3);
sumf += y[i].d * GGML_CPU_FP16_TO_FP32(x[i].d) * (sumi1 + sumi2 + IQ1S_DELTA * sumi3);
}
*s = sumf;
@@ -3817,7 +3818,7 @@ void ggml_vec_dot_iq1_s_q8_K(int n, float * GGML_RESTRICT s, size_t bs, const vo
qs += 4;
}
sumf += GGML_FP16_TO_FP32(x[i].d) * y[i].d * (sumi + IQ1S_DELTA * sumi1);
sumf += GGML_CPU_FP16_TO_FP32(x[i].d) * y[i].d * (sumi + IQ1S_DELTA * sumi1);
}
*s = sumf;
@@ -3905,7 +3906,7 @@ void ggml_vec_dot_iq1_m_q8_K(int n, float * GGML_RESTRICT s, size_t bs, const vo
}
sumf += y[i].d * GGML_FP16_TO_FP32(scale.f16) * (vaddvq_s32(sumi1) + IQ1M_DELTA * vaddvq_s32(sumi2));
sumf += y[i].d * GGML_CPU_FP16_TO_FP32(scale.f16) * (vaddvq_s32(sumi1) + IQ1M_DELTA * vaddvq_s32(sumi2));
}
*s = sumf;
@@ -3952,7 +3953,7 @@ void ggml_vec_dot_iq1_m_q8_K(int n, float * GGML_RESTRICT s, size_t bs, const vo
qh += 2;
}
sumf += GGML_FP16_TO_FP32(scale.f16) * y[i].d * (sumi1 + IQ1M_DELTA * sumi2);
sumf += GGML_CPU_FP16_TO_FP32(scale.f16) * y[i].d * (sumi1 + IQ1M_DELTA * sumi2);
}
*s = sumf;
@@ -4003,13 +4004,13 @@ void ggml_vec_dot_iq4_nl_q8_0(int n, float * GGML_RESTRICT s, size_t bs, const v
prod_2 = ggml_vdotq_s32(ggml_vdotq_s32(vdupq_n_s32(0), q4b.val[2], q8b.val[2]), q4b.val[3], q8b.val[3]);
sumf +=
GGML_FP16_TO_FP32(x[ib+0].d) * GGML_FP16_TO_FP32(y[ib + 0].d) * vaddvq_s32(prod_1) +
GGML_FP16_TO_FP32(x[ib+1].d) * GGML_FP16_TO_FP32(y[ib + 1].d) * vaddvq_s32(prod_2);
GGML_CPU_FP16_TO_FP32(x[ib+0].d) * GGML_CPU_FP16_TO_FP32(y[ib + 0].d) * vaddvq_s32(prod_1) +
GGML_CPU_FP16_TO_FP32(x[ib+1].d) * GGML_CPU_FP16_TO_FP32(y[ib + 1].d) * vaddvq_s32(prod_2);
}
#endif
for (; ib < nb; ++ib) {
const float d = GGML_FP16_TO_FP32(y[ib].d)*GGML_FP16_TO_FP32(x[ib].d);
const float d = GGML_CPU_FP16_TO_FP32(y[ib].d)*GGML_CPU_FP16_TO_FP32(x[ib].d);
int sumi1 = 0, sumi2 = 0;
for (int j = 0; j < QK4_NL/2; ++j) {
sumi1 += y[ib].qs[j+ 0] * kvalues_iq4nl[x[ib].qs[j] & 0xf];
@@ -4071,7 +4072,7 @@ void ggml_vec_dot_iq4_xs_q8_K(int n, float * GGML_RESTRICT s, size_t bs, const v
}
sumf += GGML_FP16_TO_FP32(x[ibl].d) * y[ibl].d * (sumi1 + sumi2);
sumf += GGML_CPU_FP16_TO_FP32(x[ibl].d) * y[ibl].d * (sumi1 + sumi2);
}
*s = sumf;
@@ -4079,7 +4080,7 @@ void ggml_vec_dot_iq4_xs_q8_K(int n, float * GGML_RESTRICT s, size_t bs, const v
#else
float sumf = 0;
for (int ibl = 0; ibl < nb; ++ibl) {
const float d4d8 = GGML_FP16_TO_FP32(x[ibl].d) * y[ibl].d;
const float d4d8 = GGML_CPU_FP16_TO_FP32(x[ibl].d) * y[ibl].d;
uint16_t h = x[ibl].scales_h;
const uint8_t * qs = x[ibl].qs;
const int8_t * q8 = y[ibl].qs;