mirror of
				https://github.com/ggml-org/llama.cpp.git
				synced 2025-10-31 08:51:55 +00:00 
			
		
		
		
	convert-new.py : pick #2427 for HF 70B support
This commit is contained in:
		| @@ -104,7 +104,7 @@ TENSORS_SET = set(TENSORS_LIST) | ||||
|  | ||||
| def find_n_mult(n_ff: int, n_embd: int) -> int: | ||||
|     # hardcoded magic range | ||||
|     for n_mult in range(256, 1, -1): | ||||
|     for n_mult in range(8192, 1, -1): | ||||
|         calc_ff = (((8*n_embd) // 3 + n_mult - 1) // n_mult)*n_mult | ||||
|         if calc_ff == n_ff: | ||||
|             return n_mult | ||||
| @@ -118,6 +118,7 @@ class Params: | ||||
|     n_mult:    int | ||||
|     n_head:    int | ||||
|     n_layer:   int | ||||
|     n_kv_head: Optional[int]  # This parameter is only used for Llama 2 | ||||
|  | ||||
|     @staticmethod | ||||
|     def guessed(model: 'LazyModel') -> 'Params': | ||||
| @@ -144,6 +145,7 @@ class Params: | ||||
|             n_mult    = 256, | ||||
|             n_head    = n_head, | ||||
|             n_layer   = n_layer, | ||||
|             n_kv_head = None, | ||||
|         ) | ||||
|  | ||||
|     @staticmethod | ||||
| @@ -155,6 +157,7 @@ class Params: | ||||
|         n_head    = config["num_attention_heads"]; | ||||
|         n_layer   = config["num_hidden_layers"]; | ||||
|         n_ff      = config["intermediate_size"]; | ||||
|         n_kv_head = config.get("num_key_value_heads") | ||||
|  | ||||
|         n_mult = find_n_mult(n_ff, n_embd); | ||||
|  | ||||
| @@ -164,6 +167,7 @@ class Params: | ||||
|             n_mult    = n_mult, | ||||
|             n_head    = n_head, | ||||
|             n_layer   = n_layer, | ||||
|             n_kv_head = n_kv_head, | ||||
|         ) | ||||
|  | ||||
|     # LLaMA v2 70B params.json | ||||
| @@ -187,6 +191,7 @@ class Params: | ||||
|             n_mult    = n_mult, | ||||
|             n_head    = n_head, | ||||
|             n_layer   = n_layer, | ||||
|             n_kv_head = None, | ||||
|         ) | ||||
|  | ||||
|     @staticmethod | ||||
| @@ -293,7 +298,9 @@ class SentencePieceVocab: | ||||
| Vocab = Union[BpeVocab, SentencePieceVocab] | ||||
|  | ||||
|  | ||||
| def permute(weights: NDArray, n_head: int) -> NDArray: | ||||
| def permute(weights: NDArray, n_head: int, n_kv_head: Optional[int] = None) -> NDArray: | ||||
|     if n_kv_head is not None and n_head != n_kv_head: | ||||
|         n_head //= n_kv_head | ||||
|     return (weights.reshape(n_head, 2, weights.shape[0] // n_head // 2, *weights.shape[1:]) | ||||
|                 .swapaxes(1, 2) | ||||
|                 .reshape(weights.shape)) | ||||
| @@ -305,7 +312,7 @@ class Tensor(metaclass=ABCMeta): | ||||
|     @abstractmethod | ||||
|     def astype(self, data_type: DataType) -> 'Tensor': ... | ||||
|     @abstractmethod | ||||
|     def permute(self, n_head: int) -> 'Tensor': ... | ||||
|     def permute(self, n_head: int, n_kv_head: Optional[int] = None) -> 'Tensor': ... | ||||
|     @abstractmethod | ||||
|     def permute_part(self, n_part: int, n_head: int) -> 'UnquantizedTensor': ... | ||||
|     @abstractmethod | ||||
| @@ -343,8 +350,8 @@ class UnquantizedTensor(Tensor): | ||||
|         r = self.ndarray.shape[0] // 3 | ||||
|         return UnquantizedTensor(self.ndarray[r * n_part : r * n_part + r, ...]) | ||||
|  | ||||
|     def permute(self, n_head: int) -> 'UnquantizedTensor': | ||||
|         return UnquantizedTensor(permute(self.ndarray, n_head)) | ||||
|     def permute(self, n_head: int, n_kv_head: Optional[int] = None) -> 'UnquantizedTensor': | ||||
|         return UnquantizedTensor(permute(self.ndarray, n_head, n_kv_head)) | ||||
|  | ||||
|  | ||||
| def load_unquantized(lazy_tensor: 'LazyTensor', expected_dtype: Any = None, convert: bool = False) -> NDArray: | ||||
| @@ -367,18 +374,18 @@ GGMLCompatibleTensor = Union[UnquantizedTensor] | ||||
|  | ||||
|  | ||||
| class DeferredPermutedTensor(Tensor): | ||||
|     def __init__(self, base: Tensor, n_head: int) -> None: | ||||
|     def __init__(self, base: Tensor, n_head: int, n_kv_head: Optional[int] = None) -> None: | ||||
|         self.base = base | ||||
|         self.n_head = n_head | ||||
|         self.data_type = self.base.data_type | ||||
|  | ||||
|     def astype(self, data_type: DataType) -> Tensor: | ||||
|         return self.base.astype(data_type).permute(self.n_head) | ||||
|         return self.base.astype(data_type).permute(self.n_head, self.n_kv_head) | ||||
|  | ||||
|     def to_ggml(self) -> GGMLCompatibleTensor: | ||||
|         return self.base.to_ggml().permute(self.n_head) | ||||
|         return self.base.to_ggml().permute(self.n_head, self.n_kv_head) | ||||
|  | ||||
|     def permute(self, n_head: int) -> Tensor: | ||||
|     def permute(self, n_head: int, n_kv_head: Optional[int] = None) -> Tensor: | ||||
|         raise Exception("shouldn't permute twice") | ||||
|  | ||||
|  | ||||
| @@ -474,10 +481,10 @@ def merge_multifile_models(models_plus: List[ModelPlus]) -> ModelPlus: | ||||
|     return ModelPlus(model, paths, format, vocab) | ||||
|  | ||||
|  | ||||
| def permute_lazy(lazy_tensor: LazyTensor, n_head: int) -> LazyTensor: | ||||
| def permute_lazy(lazy_tensor: LazyTensor, n_head: int, n_kv_head: Optional[int] = None) -> LazyTensor: | ||||
|     def load() -> Tensor: | ||||
|         return lazy_tensor.load().permute(n_head) | ||||
|     return LazyTensor(load, lazy_tensor.shape, lazy_tensor.data_type, f'permute({n_head}) ' + lazy_tensor.description) | ||||
|         return lazy_tensor.load().permute(n_head, n_kv_head) | ||||
|     return LazyTensor(load, lazy_tensor.shape, lazy_tensor.data_type, f'permute({n_head}, {n_kv_head}) ' + lazy_tensor.description) | ||||
|  | ||||
| def permute_part_lazy(lazy_tensor: LazyTensor, n_part: int, n_head: int) -> LazyTensor: | ||||
|     def load() -> Tensor: | ||||
| @@ -502,7 +509,7 @@ def convert_transformers_to_orig(model: LazyModel, params: Params) -> LazyModel: | ||||
|     for i in itertools.count(): | ||||
|         if f"model.layers.{i}.self_attn.q_proj.weight" in model: | ||||
|             out[f"layers.{i}.attention.wq.weight"] = permute_lazy(model[f"model.layers.{i}.self_attn.q_proj.weight"], params.n_head) | ||||
|             out[f"layers.{i}.attention.wk.weight"] = permute_lazy(model[f"model.layers.{i}.self_attn.k_proj.weight"], params.n_head) | ||||
|             out[f"layers.{i}.attention.wk.weight"] = permute_lazy(model[f"model.layers.{i}.self_attn.k_proj.weight"], params.n_head, params.n_kv_head) | ||||
|             out[f"layers.{i}.attention.wv.weight"] = model[f"model.layers.{i}.self_attn.v_proj.weight"] | ||||
|         elif f"model.layers.{i}.self_attn.W_pack.weight" in model: | ||||
|             out[f"layers.{i}.attention.wq.weight"] = permute_part_lazy(model[f"model.layers.{i}.self_attn.W_pack.weight"], 0, params.n_head) | ||||
|   | ||||
		Reference in New Issue
	
	Block a user
	 Georgi Gerganov
					Georgi Gerganov