mirror of
				https://github.com/ggml-org/llama.cpp.git
				synced 2025-10-31 08:51:55 +00:00 
			
		
		
		
	restore simple.cpp for now
This commit is contained in:
		| @@ -1,14 +1,46 @@ | ||||
| #include <stdio.h> | ||||
| #ifndef _GNU_SOURCE | ||||
| #define _GNU_SOURCE | ||||
| #endif | ||||
|  | ||||
| #include "common.h" | ||||
| #include "llama.h" | ||||
| #include "build-info.h" | ||||
|  | ||||
| #include <cassert> | ||||
| #include <cinttypes> | ||||
| #include <cmath> | ||||
| #include <cstdio> | ||||
| #include <cstring> | ||||
| #include <ctime> | ||||
| #include <fstream> | ||||
| #include <iostream> | ||||
| #include <string> | ||||
| #include <vector> | ||||
|  | ||||
| #include "llama.h" | ||||
| #if defined (__unix__) || (defined (__APPLE__) && defined (__MACH__)) | ||||
| #include <signal.h> | ||||
| #include <unistd.h> | ||||
| #elif defined (_WIN32) | ||||
| #define WIN32_LEAN_AND_MEAN | ||||
| #define NOMINMAX | ||||
| #include <windows.h> | ||||
| #include <signal.h> | ||||
| #endif | ||||
|  | ||||
|  | ||||
| void generate_sequence(llama_context * ctx, int n_ctx, const std::vector<llama_token>& prompt_tokens, float temperature) { | ||||
|     // print the tokens from the prompt | ||||
|     for (llama_token id : prompt_tokens) { | ||||
|         printf("%s", llama_token_to_str(ctx, id)); | ||||
|  | ||||
| int main(int argc, char ** argv) | ||||
| { | ||||
|     gpt_params params; | ||||
|  | ||||
|     //--------------------------------- | ||||
|     // Print help : | ||||
|     //--------------------------------- | ||||
|  | ||||
|     if ( argc == 1 || argv[1][0] == '-' ) | ||||
|     { | ||||
|         printf( "usage: %s MODEL_PATH [PROMPT]\n" , argv[0] ); | ||||
|         return 1 ; | ||||
|     } | ||||
|  | ||||
|     //--------------------------------- | ||||
| @@ -75,164 +107,77 @@ void generate_sequence(llama_context * ctx, int n_ctx, const std::vector<llama_t | ||||
|  | ||||
|     fflush(stdout); | ||||
|  | ||||
|     // the maximum number of tokens to generate at a time | ||||
|     // TODO: not supported, remove | ||||
|     const int CUDA_MAX_TOKENS = 1; | ||||
|     llama_token tokens_out[CUDA_MAX_TOKENS]; | ||||
|  | ||||
|     // current position in the context window | ||||
|     int n_past = 0; | ||||
|     //--------------------------------- | ||||
|     // Main prediction loop : | ||||
|     //--------------------------------- | ||||
|  | ||||
|     // number of tokens to generate | ||||
|     int n_tokens_out; | ||||
|     // The LLM keeps a contextual cache memory of previous token evaluation. | ||||
|     // Usually, once this cache is full, it is required to recompute a compressed context based on previous | ||||
|     // tokens (see "infinite text generation via context swapping" in the main example), but in this minimalist | ||||
|     // example, we will just stop the loop once this cache is full or once an end of stream is detected. | ||||
|  | ||||
|     // list of tokens to evaluate | ||||
|     // note that at most llama_context_params::n_batch tokens can be evaluated at a time | ||||
|     std::vector<llama_token> token_list = prompt_tokens; | ||||
|     while ( llama_get_kv_cache_token_count( ctx ) < max_context_size ) | ||||
|     { | ||||
|         //--------------------------------- | ||||
|         // Evaluate the tokens : | ||||
|         //--------------------------------- | ||||
|  | ||||
|     while (n_past < n_ctx) { | ||||
|         // evaluate the tokens | ||||
|  | ||||
|         // llama_eval generates one token at a time | ||||
|         n_tokens_out = 1; | ||||
|  | ||||
|         // number of threads to use for CPU evaluation - ignored if compiled with CUDA support | ||||
|         const int n_threads = 4; | ||||
|         // note: llama_eval is not compatible with GPU sampling | ||||
|         if (llama_eval(ctx, token_list.data(), token_list.size(), n_past, n_threads)) { | ||||
|             fprintf(stderr, "%s : failed to eval\n", __func__ ); | ||||
|             exit(1); | ||||
|         if ( llama_eval( ctx , tokens_list.data() , tokens_list.size() , llama_get_kv_cache_token_count( ctx ) , params.n_threads ) ) | ||||
|         { | ||||
|             fprintf( stderr,  "%s : failed to eval\n" , __func__ ); | ||||
|             return 1; | ||||
|         } | ||||
|  | ||||
|         // perform sampling on the CPU | ||||
|         float * logits  = llama_get_logits(ctx); | ||||
|         auto n_vocab = llama_n_vocab(ctx); | ||||
|         tokens_list.clear(); | ||||
|  | ||||
|         //--------------------------------- | ||||
|         // Select the best prediction : | ||||
|         //--------------------------------- | ||||
|  | ||||
|         llama_token new_token_id = 0; | ||||
|  | ||||
|         auto logits  = llama_get_logits( ctx ); | ||||
|         auto n_vocab = llama_n_vocab( ctx ); // the size of the LLM vocabulary (in tokens) | ||||
|  | ||||
|         // initialize candidate array from logits | ||||
|         std::vector<llama_token_data> candidates; | ||||
|         candidates.reserve(n_vocab); | ||||
|         for(llama_token token_id = 0 ; token_id < n_vocab ; token_id++) { | ||||
|             candidates.push_back(llama_token_data{ token_id, logits[token_id], 0.0f}); | ||||
|         candidates.reserve( n_vocab ); | ||||
|  | ||||
|         for( llama_token token_id = 0 ; token_id < n_vocab ; token_id++ ) | ||||
|         { | ||||
|             candidates.emplace_back( llama_token_data{ token_id , logits[ token_id ] , 0.0f } ); | ||||
|         } | ||||
|  | ||||
|         llama_token_data_array candidates_p = { candidates.data(), candidates.size(), false }; | ||||
|  | ||||
|         // sample token | ||||
|         llama_sample_temperature(ctx, &candidates_p, temperature); | ||||
|         tokens_out[0] = llama_sample_token(ctx, &candidates_p); | ||||
|         // Select it using the "Greedy sampling" method : | ||||
|         new_token_id = llama_sample_token_greedy( ctx , &candidates_p ); | ||||
|  | ||||
|         // increment the position in the context window | ||||
|         n_past += token_list.size() + n_tokens_out - 1; | ||||
|  | ||||
|         token_list.clear(); | ||||
|  | ||||
|         // print the new tokens | ||||
|         for (int i = 0; i < n_tokens_out; i++) { | ||||
|             llama_token new_token_id = tokens_out[i]; | ||||
|  | ||||
|         // is it an end of stream ? | ||||
|             if (new_token_id == llama_token_eos()) { | ||||
|         if ( new_token_id == llama_token_eos() ) | ||||
|         { | ||||
|             fprintf(stderr, " [end of text]\n"); | ||||
|                 //return; | ||||
|             break; | ||||
|         } | ||||
|  | ||||
|             // print the new token : | ||||
|             printf("%s", llama_token_to_str(ctx, new_token_id)); | ||||
|         } | ||||
|         fflush(stdout); | ||||
|         // Print the new token : | ||||
|         printf( "%s" , llama_token_to_str( ctx , new_token_id ) ); | ||||
|         fflush( stdout ); | ||||
|  | ||||
|         // push the last new token for the next evaluation | ||||
|         token_list.push_back(tokens_out[n_tokens_out - 1]); | ||||
|     } | ||||
| } | ||||
|         // Push this new token for next evaluation : | ||||
|         tokens_list.push_back( new_token_id ); | ||||
|  | ||||
| int main(int argc, char ** argv) { | ||||
|     if (argc < 2 || argv[1][0] == '-') { | ||||
|         printf("usage: %s <model> <n_ctx> <n_gens> <temp> [prompt]\n", argv[0]); | ||||
|         printf(" note: passing a temp parameter will enable GPU sampling\n"); | ||||
|         return 1 ; | ||||
|     } | ||||
|     } // wend of main loop | ||||
|  | ||||
|     std::string model = argv[1]; | ||||
|     struct llama_context_params lparams = llama_context_default_params(); | ||||
|     llama_free( ctx ); | ||||
|     llama_free_model( model ); | ||||
|  | ||||
|     if (argc >= 3) { | ||||
|         lparams.n_ctx = std::stoi(argv[2]); | ||||
|     } else { | ||||
|         lparams.n_ctx = 512; | ||||
|     } | ||||
|  | ||||
|     int n_gens; | ||||
|     if (argc >= 4) { | ||||
|         n_gens = std::stoi(argv[3]); | ||||
|     } else { | ||||
|         n_gens = 1; | ||||
|     } | ||||
|  | ||||
|     float temperature; | ||||
|  | ||||
|     if (argc >= 5) { | ||||
|         temperature = std::stof(argv[4]); | ||||
|     } else { | ||||
|         temperature = 0.8f; | ||||
|     } | ||||
|  | ||||
|     std::string prompt; | ||||
|     if (argc >= 6) { | ||||
|         prompt = argv[5]; | ||||
|     } else { | ||||
|         prompt = "Hello my name is"; | ||||
|     } | ||||
|  | ||||
|     // initialize llama.cpp | ||||
|     bool numa = false; | ||||
|     llama_init_backend(numa); | ||||
|  | ||||
|     llama_model * lmodel  = llama_load_model_from_file(model.c_str(), lparams); | ||||
|     if (lmodel == NULL) { | ||||
|         fprintf(stderr, "%s: error: failed to load model '%s'\n", __func__, model.c_str()); | ||||
|         return 1; | ||||
|     } | ||||
|  | ||||
|     llama_context * ctx = llama_new_context_with_model(lmodel, lparams); | ||||
|     if (ctx == NULL) { | ||||
|         fprintf(stderr, "%s: error: failed to create context with model '%s'\n", __func__, model.c_str()); | ||||
|         llama_free_model(lmodel); | ||||
|         return 1; | ||||
|     } | ||||
|  | ||||
|     // tokenize the prompt | ||||
|     std::vector<llama_token> token_list(lparams.n_ctx); | ||||
|     int prompt_tokens = llama_tokenize(ctx, prompt.c_str(), token_list.data(), token_list.size(), true); | ||||
|     if (prompt_tokens <= 0) { | ||||
|         fprintf(stderr, "%s: error: unable to tokenize prompt\n", __func__); | ||||
|         return 1; | ||||
|     } | ||||
|  | ||||
|     token_list.resize(prompt_tokens); | ||||
|  | ||||
|     const int max_context_size     = llama_n_ctx(ctx); | ||||
|     const int max_tokens_list_size = max_context_size - 4 ; | ||||
|  | ||||
|     if ((int)token_list.size() > max_tokens_list_size) { | ||||
|         fprintf( stderr, "%s: error: prompt too long (%d tokens, max %d)\n" , | ||||
|              __func__, (int)token_list.size(), max_tokens_list_size ); | ||||
|         return 1; | ||||
|     } | ||||
|  | ||||
|     fprintf(stderr, "\n\n"); | ||||
|  | ||||
|     // generate the sequences | ||||
|     for (int i = 0; i < n_gens; i++) { | ||||
|         printf("==== GENERATION %d ====\n", i + 1); | ||||
|         generate_sequence(ctx, max_context_size, token_list, temperature); | ||||
|         printf("\n\n"); | ||||
|     } | ||||
|  | ||||
|     llama_print_timings(ctx); | ||||
|     llama_free(ctx); | ||||
|     llama_backend_free(); | ||||
|  | ||||
|     llama_backend_free(); | ||||
|  | ||||
|     return 0; | ||||
| } | ||||
|  | ||||
| // EOF | ||||
|   | ||||
		Reference in New Issue
	
	Block a user
	 slaren
					slaren