CANN: fix CPU memory leak in CANN backend (#16549)

This commit fixes a CPU-side memory leak issue in the CANN backend,
which occurred when intermediate aclTensorList objects were not properly
released after operator execution. The leak happened during repeated
invocations of CANN ops (e.g., FlashAttention), leading to increasing
host memory usage over time.

Proper resource cleanup (aclDestroyTensorList and related release logic)
has been added to ensure that all temporary tensors are correctly freed.
This commit is contained in:
Chenguang Li
2025-10-13 17:01:24 +08:00
committed by GitHub
parent 1fb9504eb7
commit 56fc38b965

View File

@@ -146,9 +146,7 @@ void ggml_cann_op_unary_gated(
unary_op(ctx, acl_src0, acl_dst);
GGML_CANN_CALL_ACLNN_OP(ctx, InplaceMul, acl_dst, acl_src1);
ggml_cann_release_resources(ctx, acl_src0, acl_dst);
if(src1)
ggml_cann_release_resources(ctx, acl_src1);
ggml_cann_release_resources(ctx, acl_src0, acl_src1, acl_dst);
}
/**
@@ -1851,7 +1849,7 @@ void ggml_cann_get_rows(ggml_backend_cann_context& ctx, ggml_tensor* dst) {
dst->data, dst->ne, dst->nb,
src1, dst->type);
ggml_cann_release_resources(ctx, dequant_tensor);
ggml_cann_release_resources(ctx, acl_weight_tensor, acl_scale_tensor, dequant_tensor);
break;
}
default:
@@ -3290,8 +3288,8 @@ void ggml_cann_flash_attn_ext(ggml_backend_cann_context& ctx, ggml_tensor* dst){
aclTensor* acl_q_tensor = acl_src0_f16_tensor;
aclTensor* acl_k_tensors[] = {acl_src1_f16_tensor};
aclTensor* acl_v_tensors[] = {acl_src2_f16_tensor};
auto acl_k_tensor_list = aclCreateTensorList(acl_k_tensors, kvTensorNum);
auto acl_v_tensor_list = aclCreateTensorList(acl_v_tensors, kvTensorNum);
aclTensorList* acl_k_tensor_list = aclCreateTensorList(acl_k_tensors, kvTensorNum);
aclTensorList* acl_v_tensor_list = aclCreateTensorList(acl_v_tensors, kvTensorNum);
int64_t numHeads = src0->ne[2]; // N
int64_t numKeyValueHeads = src1->ne[2];
@@ -3362,8 +3360,8 @@ void ggml_cann_flash_attn_ext(ggml_backend_cann_context& ctx, ggml_tensor* dst){
}
ggml_cann_release_resources(ctx, acl_src0_f16_tensor,
acl_src1_f16_tensor,
acl_src2_f16_tensor,
acl_k_tensor_list,
acl_v_tensor_list,
fa_dst_tensor,
acl_dst_tensor,
bcast_pse_tensor);