mirror of
				https://github.com/ggml-org/llama.cpp.git
				synced 2025-10-30 08:42:00 +00:00 
			
		
		
		
	sched : copy only the used experts when offloading prompt processing (#15346)
This commit is contained in:
		| @@ -19,9 +19,8 @@ | |||||||
| #include <stdio.h> | #include <stdio.h> | ||||||
| #include <stdlib.h> | #include <stdlib.h> | ||||||
| #include <string.h> | #include <string.h> | ||||||
| #include <string> |  | ||||||
| #include <vector> |  | ||||||
| #include <algorithm> | #include <algorithm> | ||||||
|  | #include <vector> | ||||||
|  |  | ||||||
| #ifdef __APPLE__ | #ifdef __APPLE__ | ||||||
| #include <sys/types.h> | #include <sys/types.h> | ||||||
| @@ -1352,6 +1351,10 @@ static bool ggml_backend_sched_alloc_splits(ggml_backend_sched_t sched) { | |||||||
| static enum ggml_status ggml_backend_sched_compute_splits(ggml_backend_sched_t sched) { | static enum ggml_status ggml_backend_sched_compute_splits(ggml_backend_sched_t sched) { | ||||||
|     struct ggml_backend_sched_split * splits = sched->splits; |     struct ggml_backend_sched_split * splits = sched->splits; | ||||||
|  |  | ||||||
|  |     ggml_tensor * prev_ids_tensor = nullptr; | ||||||
|  |     std::vector<int32_t> ids; | ||||||
|  |     std::vector<ggml_bitset_t> used_ids; | ||||||
|  |  | ||||||
|     for (int i = 0; i < sched->n_splits; i++) { |     for (int i = 0; i < sched->n_splits; i++) { | ||||||
|         struct ggml_backend_sched_split * split = &splits[i]; |         struct ggml_backend_sched_split * split = &splits[i]; | ||||||
|         int split_backend_id = split->backend_id; |         int split_backend_id = split->backend_id; | ||||||
| @@ -1378,6 +1381,80 @@ static enum ggml_status ggml_backend_sched_compute_splits(ggml_backend_sched_t s | |||||||
|                 } else { |                 } else { | ||||||
|                     ggml_backend_synchronize(split_backend); |                     ggml_backend_synchronize(split_backend); | ||||||
|                 } |                 } | ||||||
|  |  | ||||||
|  |                 // when offloading MoE weights, we can reduce the amount of data copied by copying only the experts that are used | ||||||
|  |                 ggml_tensor * node = split->graph.nodes[0]; | ||||||
|  |                 if (split->graph.n_nodes > 0 && | ||||||
|  |                     ggml_backend_buffer_get_usage(input->buffer) == GGML_BACKEND_BUFFER_USAGE_WEIGHTS && | ||||||
|  |                     ggml_backend_buffer_is_host(input->buffer) && ( | ||||||
|  |                     (node->src[0] == input_cpy && node->op == GGML_OP_MUL_MAT_ID) | ||||||
|  |                     //|| (node->src[1] == input_cpy && node->op == GGML_OP_ADD_ID) /* GGML_OP_ADD_ID weights are small and not worth splitting */ | ||||||
|  |                     )) { | ||||||
|  |  | ||||||
|  |                     const int64_t n_expert   = node->op == GGML_OP_MUL_MAT_ID ? input->ne[2] : input->ne[1]; | ||||||
|  |                     const size_t expert_size = node->op == GGML_OP_MUL_MAT_ID ? input->nb[2] : input->nb[1]; | ||||||
|  |  | ||||||
|  |                     ggml_backend_synchronize(input_backend); | ||||||
|  |  | ||||||
|  |                     // get the ids | ||||||
|  |                     ggml_tensor * ids_tensor = node->src[2]; | ||||||
|  |                     if (ids_tensor != prev_ids_tensor) { | ||||||
|  |                         ids.resize(ggml_nbytes(ids_tensor) / sizeof(int32_t)); | ||||||
|  |                         ggml_backend_tensor_get_async(split_backend, ids_tensor, ids.data(), 0, ggml_nbytes(ids_tensor)); | ||||||
|  |                         ggml_backend_synchronize(split_backend); | ||||||
|  |  | ||||||
|  |                         // find the used experts | ||||||
|  |                         used_ids.clear(); | ||||||
|  |                         used_ids.resize(ggml_bitset_size(n_expert)); | ||||||
|  |                         for (int64_t i1 = 0; i1 < ids_tensor->ne[1]; i1++) { | ||||||
|  |                             for (int64_t i0 = 0; i0 < ids_tensor->ne[0]; i0++) { | ||||||
|  |                                 int32_t id = ids[i1 * ids_tensor->nb[1]/sizeof(int32_t) + i0 * ids_tensor->nb[0]/sizeof(int32_t)]; | ||||||
|  |                                 ggml_bitset_set(used_ids.data(), id); | ||||||
|  |                             } | ||||||
|  |                         } | ||||||
|  |  | ||||||
|  |                         prev_ids_tensor = ids_tensor; | ||||||
|  |                     } | ||||||
|  |  | ||||||
|  |                     // group consecutive experts and copy them together | ||||||
|  |                     auto copy_experts = [&](int32_t first_id, int32_t last_id) { | ||||||
|  |                         const size_t expert_offset = first_id * expert_size; | ||||||
|  |                         const size_t expert_size_copy =  (last_id - first_id + 1) * expert_size; | ||||||
|  |                         const size_t padding = std::min<size_t>(expert_size, 512); | ||||||
|  |                         const size_t padding_end = last_id < n_expert - 1 ? padding : 0; | ||||||
|  |  | ||||||
|  |                         ggml_backend_tensor_set_async(split_backend, | ||||||
|  |                             input_cpy, | ||||||
|  |                             (const uint8_t *)input->data + expert_offset, expert_offset, | ||||||
|  |                             // copy a bit extra at the to ensure there are no NaNs in the padding of the last expert | ||||||
|  |                             // this is necessary for MMQ in the CUDA backend | ||||||
|  |                             expert_size_copy + padding_end); | ||||||
|  |                     }; | ||||||
|  |  | ||||||
|  |                     int id = 0; | ||||||
|  |                     while (!ggml_bitset_get(used_ids.data(), id)) { | ||||||
|  |                         id++; | ||||||
|  |                     } | ||||||
|  |                     int32_t first_id = id; | ||||||
|  |                     int32_t last_id = first_id; | ||||||
|  |  | ||||||
|  |                     for (++id; id < n_expert; ++id) { | ||||||
|  |                         if (!ggml_bitset_get(used_ids.data(), id)) { | ||||||
|  |                             continue; | ||||||
|  |                         } | ||||||
|  |  | ||||||
|  |                         if (id == last_id + 1) { | ||||||
|  |                             last_id = id; | ||||||
|  |                             continue; | ||||||
|  |                         } | ||||||
|  |  | ||||||
|  |                         copy_experts(first_id, last_id); | ||||||
|  |  | ||||||
|  |                         first_id = id; | ||||||
|  |                         last_id = id; | ||||||
|  |                     } | ||||||
|  |                     copy_experts(first_id, last_id); | ||||||
|  |                 } else { | ||||||
|                     // try async copy, but if not possible, we can still use a sync copy without synchronizing the dst backend, since we handle the synchronization here with multiple copies and events |                     // try async copy, but if not possible, we can still use a sync copy without synchronizing the dst backend, since we handle the synchronization here with multiple copies and events | ||||||
|                     // TODO: add public function to facilitate this, since applications do not have direct access to the backend interface |                     // TODO: add public function to facilitate this, since applications do not have direct access to the backend interface | ||||||
|                     if (!split_backend->iface.cpy_tensor_async || !split_backend->iface.cpy_tensor_async(input_backend, split_backend, input, input_cpy)) { |                     if (!split_backend->iface.cpy_tensor_async || !split_backend->iface.cpy_tensor_async(input_backend, split_backend, input, input_cpy)) { | ||||||
| @@ -1391,6 +1468,7 @@ static enum ggml_status ggml_backend_sched_compute_splits(ggml_backend_sched_t s | |||||||
|                     } |                     } | ||||||
|                 } |                 } | ||||||
|             } |             } | ||||||
|  |         } | ||||||
|  |  | ||||||
|         if (!sched->callback_eval) { |         if (!sched->callback_eval) { | ||||||
|             enum ggml_status ec = ggml_backend_graph_compute_async(split_backend, &split->graph); |             enum ggml_status ec = ggml_backend_graph_compute_async(split_backend, &split->graph); | ||||||
|   | |||||||
		Reference in New Issue
	
	Block a user
	 Diego Devesa
					Diego Devesa