mirror of
				https://github.com/ggml-org/llama.cpp.git
				synced 2025-10-29 08:41:22 +00:00 
			
		
		
		
	context : remove logits_all flag (#13284)
* context : remove logits_all flag ggml-ci * llama : remove logits_all flag + reorder llama_context_params ggml-ci
This commit is contained in:
		| @@ -2097,13 +2097,6 @@ common_params_context common_params_parser_init(common_params & params, llama_ex | ||||
|             params.cache_type_v = kv_cache_type_from_str(value); | ||||
|         } | ||||
|     ).set_env("LLAMA_ARG_CACHE_TYPE_V")); | ||||
|     add_opt(common_arg( | ||||
|         {"--perplexity", "--all-logits"}, | ||||
|         string_format("return logits for all tokens in the batch (default: %s)", params.logits_all ? "true" : "false"), | ||||
|         [](common_params & params) { | ||||
|             params.logits_all = true; | ||||
|         } | ||||
|     ).set_examples({LLAMA_EXAMPLE_PERPLEXITY})); | ||||
|     add_opt(common_arg( | ||||
|         {"--hellaswag"}, | ||||
|         "compute HellaSwag score over random tasks from datafile supplied with -f", | ||||
|   | ||||
| @@ -1096,7 +1096,6 @@ struct llama_context_params common_context_params_to_llama(const common_params & | ||||
|     cparams.n_threads         = params.cpuparams.n_threads; | ||||
|     cparams.n_threads_batch   = params.cpuparams_batch.n_threads == -1 ? | ||||
|                                 params.cpuparams.n_threads : params.cpuparams_batch.n_threads; | ||||
|     cparams.logits_all        = params.logits_all; | ||||
|     cparams.embeddings        = params.embedding; | ||||
|     cparams.rope_scaling_type = params.rope_scaling_type; | ||||
|     cparams.rope_freq_base    = params.rope_freq_base; | ||||
|   | ||||
| @@ -324,7 +324,6 @@ struct common_params { | ||||
|     bool ctx_shift         = true;  // context shift on inifinite text generation | ||||
|  | ||||
|     bool input_prefix_bos  = false; // prefix BOS to user inputs, preceding input_prefix | ||||
|     bool logits_all        = false; // return logits for all tokens in the batch | ||||
|     bool use_mmap          = true;  // use mmap for faster loads | ||||
|     bool use_mlock         = false; // use mlock to keep model in memory | ||||
|     bool verbose_prompt    = false; // print prompt tokens before generation | ||||
|   | ||||
| @@ -351,19 +351,17 @@ extern "C" { | ||||
|         enum ggml_type type_k; // data type for K cache [EXPERIMENTAL] | ||||
|         enum ggml_type type_v; // data type for V cache [EXPERIMENTAL] | ||||
|  | ||||
|         // Keep the booleans together and at the end of the struct to avoid misalignment during copy-by-value. | ||||
|         // TODO: move at the end of the struct | ||||
|         bool logits_all;  // the llama_decode() call computes all logits, not just the last one (DEPRECATED - set llama_batch.logits instead) | ||||
|         bool embeddings;  // if true, extract embeddings (together with logits) | ||||
|         bool offload_kqv; // whether to offload the KQV ops (including the KV cache) to GPU | ||||
|         bool flash_attn;  // whether to use flash attention [EXPERIMENTAL] | ||||
|         bool no_perf;     // whether to measure performance timings | ||||
|  | ||||
|         // Abort callback | ||||
|         // if it returns true, execution of llama_decode() will be aborted | ||||
|         // currently works only with CPU execution | ||||
|         ggml_abort_callback abort_callback; | ||||
|         void *              abort_callback_data; | ||||
|  | ||||
|         // Keep the booleans together and at the end of the struct to avoid misalignment during copy-by-value. | ||||
|         bool embeddings;  // if true, extract embeddings (together with logits) | ||||
|         bool offload_kqv; // whether to offload the KQV ops (including the KV cache) to GPU | ||||
|         bool flash_attn;  // whether to use flash attention [EXPERIMENTAL] | ||||
|         bool no_perf;     // whether to measure performance timings | ||||
|     }; | ||||
|  | ||||
|     // model quantization parameters | ||||
|   | ||||
| @@ -116,8 +116,6 @@ llama_context::llama_context( | ||||
|                 __func__, n_ctx_per_seq, hparams.n_ctx_train); | ||||
|     } | ||||
|  | ||||
|     logits_all = params.logits_all; | ||||
|  | ||||
|     if (!hparams.vocab_only) { | ||||
|         // GPU backends | ||||
|         for (auto * dev : model.devices) { | ||||
| @@ -890,7 +888,7 @@ int llama_context::decode(llama_batch & inp_batch) { | ||||
|         for (uint32_t i = 0; i < n_tokens_all; ++i) { | ||||
|             n_outputs_all += batch.logits[i] != 0; | ||||
|         } | ||||
|     } else if (logits_all || embd_pooled) { | ||||
|     } else if (embd_pooled) { | ||||
|         n_outputs_all = n_tokens_all; | ||||
|     } else { | ||||
|         // keep last output only | ||||
| @@ -1853,13 +1851,12 @@ llama_context_params llama_context_default_params() { | ||||
|         /*.cb_eval_user_data           =*/ nullptr, | ||||
|         /*.type_k                      =*/ GGML_TYPE_F16, | ||||
|         /*.type_v                      =*/ GGML_TYPE_F16, | ||||
|         /*.logits_all                  =*/ false, | ||||
|         /*.abort_callback              =*/ nullptr, | ||||
|         /*.abort_callback_data         =*/ nullptr, | ||||
|         /*.embeddings                  =*/ false, | ||||
|         /*.offload_kqv                 =*/ true, | ||||
|         /*.flash_attn                  =*/ false, | ||||
|         /*.no_perf                     =*/ true, | ||||
|         /*.abort_callback              =*/ nullptr, | ||||
|         /*.abort_callback_data         =*/ nullptr, | ||||
|     }; | ||||
|  | ||||
|     return result; | ||||
|   | ||||
| @@ -187,9 +187,6 @@ private: | ||||
|  | ||||
|     std::unique_ptr<llama_memory_i> memory; | ||||
|  | ||||
|     // TODO: remove | ||||
|     bool logits_all = false; | ||||
|  | ||||
|     // decode output (2-dimensional array: [n_outputs][n_vocab]) | ||||
|     size_t  logits_size = 0; // capacity (of floats) for logits | ||||
|     float * logits      = nullptr; | ||||
|   | ||||
| @@ -585,7 +585,6 @@ int main(int argc, char ** argv) { | ||||
|     params.out_file = "imatrix.dat" ; | ||||
|  | ||||
|     params.n_ctx = 512; | ||||
|     params.logits_all = true; | ||||
|     params.escape = false; | ||||
|  | ||||
|     if (!common_params_parse(argc, argv, params, LLAMA_EXAMPLE_IMATRIX, print_usage)) { | ||||
|   | ||||
| @@ -99,14 +99,6 @@ int main(int argc, char ** argv) { | ||||
|     console::init(params.simple_io, params.use_color); | ||||
|     atexit([]() { console::cleanup(); }); | ||||
|  | ||||
|     if (params.logits_all) { | ||||
|         LOG_ERR("************\n"); | ||||
|         LOG_ERR("%s: please use the 'perplexity' tool for perplexity calculations\n", __func__); | ||||
|         LOG_ERR("************\n\n"); | ||||
|  | ||||
|         return 0; | ||||
|     } | ||||
|  | ||||
|     if (params.embedding) { | ||||
|         LOG_ERR("************\n"); | ||||
|         LOG_ERR("%s: please use the 'embedding' tool for embedding calculations\n", __func__); | ||||
|   | ||||
| @@ -1554,7 +1554,10 @@ static void multiple_choice_score(llama_context * ctx, const common_params & par | ||||
|             if (int(batch_indeces.size()) != num_answers) { | ||||
|                 batch_indeces.resize(num_answers); | ||||
|             } | ||||
|             for (int s = 0; s < num_answers; ++s) batch_indeces[s] = s0 + s; | ||||
|  | ||||
|             for (int s = 0; s < num_answers; ++s) { | ||||
|                 batch_indeces[s] = s0 + s; | ||||
|             } | ||||
|  | ||||
|             for (size_t i = 0; i < cur_task.common_prefix; ++i) { | ||||
|                 //llama_batch_add(batch, cur_task.seq_tokens[0][i], i, { s0 + 0, s0 + 1, s0 + 2, s0 + 3}, false); | ||||
| @@ -1970,7 +1973,6 @@ int main(int argc, char ** argv) { | ||||
|     common_params params; | ||||
|  | ||||
|     params.n_ctx = 512; | ||||
|     params.logits_all = true; | ||||
|     params.escape = false; | ||||
|  | ||||
|     if (!common_params_parse(argc, argv, params, LLAMA_EXAMPLE_PERPLEXITY)) { | ||||
|   | ||||
		Reference in New Issue
	
	Block a user
	 Georgi Gerganov
					Georgi Gerganov