mirror of
				https://github.com/ggml-org/llama.cpp.git
				synced 2025-10-31 08:51:55 +00:00 
			
		
		
		
	llama : fix MiniCPM (#5392)
* fix bug for norm_rms_eps missing * to align with the same order as convert.py for model write * fix: undo HF models permute tensor * update for flake8 lint
This commit is contained in:
		| @@ -1078,17 +1078,76 @@ class MiniCPMModel(Model): | |||||||
|         self.gguf_writer.add_name("MiniCPM") |         self.gguf_writer.add_name("MiniCPM") | ||||||
|         self.gguf_writer.add_context_length(self.hparams["max_position_embeddings"]) |         self.gguf_writer.add_context_length(self.hparams["max_position_embeddings"]) | ||||||
|         self.gguf_writer.add_embedding_length(self.hparams["hidden_size"]) |         self.gguf_writer.add_embedding_length(self.hparams["hidden_size"]) | ||||||
|         self.gguf_writer.add_feed_forward_length(self.hparams["intermediate_size"]) |  | ||||||
|         self.gguf_writer.add_block_count(block_count) |         self.gguf_writer.add_block_count(block_count) | ||||||
|  |         self.gguf_writer.add_feed_forward_length(self.hparams["intermediate_size"]) | ||||||
|  |         self.gguf_writer.add_rope_dimension_count(self.hparams["hidden_size"] // self.hparams["num_attention_heads"]) | ||||||
|         self.gguf_writer.add_head_count(self.hparams["num_attention_heads"]) |         self.gguf_writer.add_head_count(self.hparams["num_attention_heads"]) | ||||||
|         self.gguf_writer.add_head_count_kv(self.hparams["num_key_value_heads"]) |         self.gguf_writer.add_head_count_kv(self.hparams["num_key_value_heads"]) | ||||||
|         self.gguf_writer.add_layer_norm_rms_eps(self.hparams["rms_norm_eps"]) |         self.gguf_writer.add_layer_norm_rms_eps(self.hparams["rms_norm_eps"]) | ||||||
|         self.gguf_writer.add_file_type(self.ftype) |         self.gguf_writer.add_file_type(self.ftype) | ||||||
|         self.gguf_writer.add_rope_dimension_count(self.hparams["hidden_size"] // self.hparams["num_attention_heads"]) |  | ||||||
|  |  | ||||||
|     def set_vocab(self): |     def set_vocab(self): | ||||||
|         self._set_vocab_hf() |         self._set_vocab_hf() | ||||||
|  |  | ||||||
|  |     def _reverse_hf_permute(self, weights: Tensor, n_head: int, n_kv_head: int | None = None) -> Tensor: | ||||||
|  |         if n_kv_head is not None and n_head != n_kv_head: | ||||||
|  |             n_head //= n_kv_head | ||||||
|  |  | ||||||
|  |         return ( | ||||||
|  |             weights.reshape(n_head, 2, weights.shape[0] // n_head // 2, *weights.shape[1:]) | ||||||
|  |             .swapaxes(1, 2) | ||||||
|  |             .reshape(weights.shape) | ||||||
|  |         ) | ||||||
|  |  | ||||||
|  |     def write_tensors(self): | ||||||
|  |         block_count = self.hparams.get("n_layers", self.hparams.get("num_hidden_layers", self.hparams.get("n_layer"))) | ||||||
|  |         tensor_map = gguf.get_tensor_name_map(self.model_arch, block_count) | ||||||
|  |         n_head = self.hparams.get("num_attention_heads") | ||||||
|  |         n_kv_head = self.hparams.get("num_key_value_heads") | ||||||
|  |         for name, data_torch in self.get_tensors(): | ||||||
|  |             # we don't need these | ||||||
|  |             if name.endswith((".attention.masked_bias", ".attention.bias", ".attention.rotary_emb.inv_freq")): | ||||||
|  |                 continue | ||||||
|  |  | ||||||
|  |             old_dtype = data_torch.dtype | ||||||
|  |  | ||||||
|  |             # convert any unsupported data types to float32 | ||||||
|  |             if data_torch.dtype not in (torch.float16, torch.float32): | ||||||
|  |                 data_torch = data_torch.to(torch.float32) | ||||||
|  |  | ||||||
|  |             # HF models permute some of the tensors, so we need to undo that | ||||||
|  |             if name.endswith(("q_proj.weight")): | ||||||
|  |                 data_torch = self._reverse_hf_permute(data_torch, n_head, n_head) | ||||||
|  |             if name.endswith(("k_proj.weight")): | ||||||
|  |                 data_torch = self._reverse_hf_permute(data_torch, n_head, n_kv_head) | ||||||
|  |  | ||||||
|  |             data = data_torch.squeeze().numpy() | ||||||
|  |  | ||||||
|  |             # map tensor names | ||||||
|  |             new_name = tensor_map.get_name(name, try_suffixes=(".weight", ".bias")) | ||||||
|  |             if new_name is None: | ||||||
|  |                 print(f"Can not map tensor {name!r}") | ||||||
|  |                 sys.exit() | ||||||
|  |  | ||||||
|  |             n_dims = len(data.shape) | ||||||
|  |             data_dtype = data.dtype | ||||||
|  |  | ||||||
|  |             # if f32 desired, convert any float16 to float32 | ||||||
|  |             if self.ftype == 0 and data_dtype == np.float16: | ||||||
|  |                 data = data.astype(np.float32) | ||||||
|  |  | ||||||
|  |             # TODO: Why cant we use these float16 as-is? There should be not reason to store float16 as float32 | ||||||
|  |             if self.ftype == 1 and data_dtype == np.float16 and n_dims == 1: | ||||||
|  |                 data = data.astype(np.float32) | ||||||
|  |  | ||||||
|  |             # if f16 desired, convert any float32 2-dim weight tensors to float16 | ||||||
|  |             if self.ftype == 1 and data_dtype == np.float32 and name.endswith(".weight") and n_dims == 2: | ||||||
|  |                 data = data.astype(np.float16) | ||||||
|  |  | ||||||
|  |             print(f"{new_name}, n_dims = {n_dims}, {old_dtype} --> {data.dtype}") | ||||||
|  |  | ||||||
|  |             self.gguf_writer.add_tensor(new_name, data) | ||||||
|  |  | ||||||
|  |  | ||||||
| class QwenModel(Model): | class QwenModel(Model): | ||||||
|     @staticmethod |     @staticmethod | ||||||
|   | |||||||
| @@ -2947,6 +2947,8 @@ static void llm_load_hparams( | |||||||
|             } break; |             } break; | ||||||
|         case LLM_ARCH_MINICPM: |         case LLM_ARCH_MINICPM: | ||||||
|             { |             { | ||||||
|  |                 ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps); | ||||||
|  |  | ||||||
|                 switch (hparams.n_layer) { |                 switch (hparams.n_layer) { | ||||||
|                     case 40: model.type = e_model::MODEL_2B; break; |                     case 40: model.type = e_model::MODEL_2B; break; | ||||||
|                     default: model.type = e_model::MODEL_UNKNOWN; |                     default: model.type = e_model::MODEL_UNKNOWN; | ||||||
|   | |||||||
		Reference in New Issue
	
	Block a user
	 runfuture
					runfuture