mirror of
				https://github.com/ggml-org/llama.cpp.git
				synced 2025-10-31 08:51:55 +00:00 
			
		
		
		
	convert : update Falcon script for new HF config (#3448)
Also adds Falcon-180B support. Closes #3049 Co-authored-by: jb <jonathan.t.barnard@gmail.com>
This commit is contained in:
		| @@ -4,6 +4,7 @@ | ||||
| from __future__ import annotations | ||||
|  | ||||
| import argparse | ||||
| import contextlib | ||||
| import json | ||||
| import os | ||||
| import struct | ||||
| @@ -20,10 +21,10 @@ if 'NO_LOCAL_GGUF' not in os.environ: | ||||
| import gguf | ||||
|  | ||||
|  | ||||
| def count_model_parts(dir_model: Path) -> int: | ||||
| def count_model_parts(dir_model: Path, prefix: str) -> int: | ||||
|     num_parts = 0 | ||||
|     for filename in os.listdir(dir_model): | ||||
|         if filename.startswith("pytorch_model-"): | ||||
|         if filename.startswith(prefix): | ||||
|             num_parts += 1 | ||||
|  | ||||
|     if num_parts > 0: | ||||
| @@ -77,20 +78,26 @@ print("gguf: loading model "+dir_model.name) | ||||
| with open(dir_model / "config.json", "r", encoding="utf-8") as f: | ||||
|     hparams = json.load(f) | ||||
|  | ||||
| if hparams["architectures"][0] != "RWForCausalLM": | ||||
| if hparams["architectures"][0] != "FalconForCausalLM": | ||||
|     print("Model architecture not supported: " + hparams["architectures"][0]) | ||||
|  | ||||
|     sys.exit(1) | ||||
|  | ||||
| # get number of model parts | ||||
| num_parts = count_model_parts(dir_model) | ||||
| num_parts = count_model_parts(dir_model, "model-00") | ||||
| if num_parts: | ||||
|     is_safetensors = True | ||||
|     from safetensors import safe_open | ||||
| else: | ||||
|     is_safetensors = False | ||||
|     num_parts = count_model_parts(dir_model, "pytorch_model-") | ||||
|  | ||||
| ARCH=gguf.MODEL_ARCH.FALCON | ||||
| gguf_writer = gguf.GGUFWriter(fname_out, gguf.MODEL_ARCH_NAMES[ARCH]) | ||||
|  | ||||
| print("gguf: get model metadata") | ||||
|  | ||||
| block_count = hparams["n_layer"] | ||||
| block_count = hparams["num_hidden_layers"] | ||||
|  | ||||
| gguf_writer.add_name("Falcon") | ||||
| gguf_writer.add_context_length(2048) # not in config.json | ||||
| @@ -98,9 +105,9 @@ gguf_writer.add_tensor_data_layout("jploski") # qkv tensor transform | ||||
| gguf_writer.add_embedding_length(hparams["hidden_size"]) | ||||
| gguf_writer.add_feed_forward_length(4 * hparams["hidden_size"]) | ||||
| gguf_writer.add_block_count(block_count) | ||||
| gguf_writer.add_head_count(hparams["n_head"]) | ||||
| if "n_head_kv" in hparams: | ||||
|     gguf_writer.add_head_count_kv(hparams["n_head_kv"]) | ||||
| gguf_writer.add_head_count(hparams["num_attention_heads"]) | ||||
| if "num_kv_heads" in hparams: | ||||
|     gguf_writer.add_head_count_kv(hparams["num_kv_heads"]) | ||||
| else: | ||||
|     gguf_writer.add_head_count_kv(1) | ||||
| gguf_writer.add_layer_norm_eps(hparams["layer_norm_epsilon"]) | ||||
| @@ -146,8 +153,8 @@ special_vocab.add_to_gguf(gguf_writer) | ||||
| tensor_map = gguf.get_tensor_name_map(ARCH,block_count) | ||||
|  | ||||
| # params for qkv transform | ||||
| n_head    = hparams["n_head"] | ||||
| n_head_kv = hparams["n_head_kv"] if "n_head_kv" in hparams else 1 | ||||
| n_head    = hparams["num_attention_heads"] | ||||
| n_head_kv = hparams["num_kv_heads"] if "num_kv_heads" in hparams else 1 | ||||
|  | ||||
| head_dim = hparams["hidden_size"] // n_head | ||||
|  | ||||
| @@ -156,6 +163,10 @@ print("gguf: get tensor metadata") | ||||
|  | ||||
| if num_parts == 0: | ||||
|     part_names = iter(("pytorch_model.bin",)) | ||||
| elif is_safetensors: | ||||
|     part_names = ( | ||||
|         f"model-{n:05}-of-{num_parts:05}.safetensors" for n in range(1, num_parts + 1) | ||||
|     ) | ||||
| else: | ||||
|     part_names = ( | ||||
|         f"pytorch_model-{n:05}-of-{num_parts:05}.bin" for n in range(1, num_parts + 1) | ||||
| @@ -165,60 +176,64 @@ for part_name in part_names: | ||||
|     if args.vocab_only: | ||||
|         break | ||||
|     print("gguf: loading model part '" + part_name + "'") | ||||
|     model_part = torch.load(dir_model / part_name, map_location="cpu") | ||||
|     if is_safetensors: | ||||
|         ctx = safe_open(dir_model / part_name, framework="pt", device="cpu") | ||||
|     else: | ||||
|         ctx = contextlib.nullcontext(torch.load(dir_model / part_name, map_location="cpu")) | ||||
|  | ||||
|     for name in model_part.keys(): | ||||
|         data = model_part[name] | ||||
|     with ctx as model_part: | ||||
|         for name in model_part.keys(): | ||||
|             data = model_part.get_tensor(name) if is_safetensors else model_part[name] | ||||
|  | ||||
|         old_dtype = data.dtype | ||||
|             old_dtype = data.dtype | ||||
|  | ||||
|         # convert any unsupported data types to float32 | ||||
|         if data.dtype != torch.float16 and data.dtype != torch.float32: | ||||
|             data = data.to(torch.float32) | ||||
|             # convert any unsupported data types to float32 | ||||
|             if data.dtype != torch.float16 and data.dtype != torch.float32: | ||||
|                 data = data.to(torch.float32) | ||||
|  | ||||
|         # QKV tensor transform | ||||
|         # The original query_key_value tensor contains n_head_kv "kv groups", | ||||
|         # each consisting of n_head/n_head_kv query weights followed by one key | ||||
|         # and one value weight (shared by all query heads in the kv group). | ||||
|         # This layout makes it a big pain to work with in GGML. | ||||
|         # So we rearrange them here,, so that we have n_head query weights | ||||
|         # followed by n_head_kv key weights followed by n_head_kv value weights, | ||||
|         # in contiguous fashion. | ||||
|         # ref: https://github.com/jploski/ggml/blob/falcon40b/examples/falcon/convert-hf-to-ggml.py | ||||
|             # QKV tensor transform | ||||
|             # The original query_key_value tensor contains n_head_kv "kv groups", | ||||
|             # each consisting of n_head/n_head_kv query weights followed by one key | ||||
|             # and one value weight (shared by all query heads in the kv group). | ||||
|             # This layout makes it a big pain to work with in GGML. | ||||
|             # So we rearrange them here,, so that we have n_head query weights | ||||
|             # followed by n_head_kv key weights followed by n_head_kv value weights, | ||||
|             # in contiguous fashion. | ||||
|             # ref: https://github.com/jploski/ggml/blob/falcon40b/examples/falcon/convert-hf-to-ggml.py | ||||
|  | ||||
|         if "query_key_value" in name: | ||||
|             qkv = data.view(n_head_kv, n_head // n_head_kv + 2, head_dim, head_dim * n_head) | ||||
|             q = qkv[:, :-2 ].reshape(n_head * head_dim, head_dim * n_head) | ||||
|             k = qkv[:, [-2]].reshape(n_head_kv * head_dim, head_dim * n_head) | ||||
|             v = qkv[:, [-1]].reshape(n_head_kv * head_dim, head_dim * n_head) | ||||
|             data = torch.cat((q,k,v)).reshape_as(data) | ||||
|             if "query_key_value" in name: | ||||
|                 qkv = data.view(n_head_kv, n_head // n_head_kv + 2, head_dim, head_dim * n_head) | ||||
|                 q = qkv[:, :-2 ].reshape(n_head * head_dim, head_dim * n_head) | ||||
|                 k = qkv[:, [-2]].reshape(n_head_kv * head_dim, head_dim * n_head) | ||||
|                 v = qkv[:, [-1]].reshape(n_head_kv * head_dim, head_dim * n_head) | ||||
|                 data = torch.cat((q,k,v)).reshape_as(data) | ||||
|  | ||||
|         data = data.squeeze().numpy() | ||||
|             data = data.squeeze().numpy() | ||||
|  | ||||
|         # map tensor names | ||||
|         new_name = tensor_map.get_name(name, try_suffixes = (".weight", ".bias")) | ||||
|         if new_name is None: | ||||
|             print("Can not map tensor '" + name + "'") | ||||
|             sys.exit() | ||||
|             # map tensor names | ||||
|             new_name = tensor_map.get_name(name, try_suffixes = (".weight", ".bias")) | ||||
|             if new_name is None: | ||||
|                 print("Can not map tensor '" + name + "'") | ||||
|                 sys.exit() | ||||
|  | ||||
|         n_dims = len(data.shape) | ||||
|         data_dtype = data.dtype | ||||
|             n_dims = len(data.shape) | ||||
|             data_dtype = data.dtype | ||||
|  | ||||
|         # if f32 desired, convert any float16 to float32 | ||||
|         if ftype == 0 and data_dtype == np.float16: | ||||
|             data = data.astype(np.float32) | ||||
|             # if f32 desired, convert any float16 to float32 | ||||
|             if ftype == 0 and data_dtype == np.float16: | ||||
|                 data = data.astype(np.float32) | ||||
|  | ||||
|         # TODO: Why cant we use these float16 as-is? There should be not reason to store float16 as float32 | ||||
|         if ftype == 1 and data_dtype == np.float16 and n_dims == 1: | ||||
|             data = data.astype(np.float32) | ||||
|             # TODO: Why cant we use these float16 as-is? There should be not reason to store float16 as float32 | ||||
|             if ftype == 1 and data_dtype == np.float16 and n_dims == 1: | ||||
|                 data = data.astype(np.float32) | ||||
|  | ||||
|         # if f16 desired, convert any float32 2-dim weight tensors to float16 | ||||
|         if ftype == 1 and data_dtype == np.float32 and name.endswith(".weight") and n_dims == 2: | ||||
|             data = data.astype(np.float16) | ||||
|             # if f16 desired, convert any float32 2-dim weight tensors to float16 | ||||
|             if ftype == 1 and data_dtype == np.float32 and name.endswith(".weight") and n_dims == 2: | ||||
|                 data = data.astype(np.float16) | ||||
|  | ||||
|         print(new_name + ", n_dims = " + str(n_dims) + ", " + str(old_dtype) + " --> " + str(data.dtype)) | ||||
|             print(new_name + ", n_dims = " + str(n_dims) + ", " + str(old_dtype) + " --> " + str(data.dtype)) | ||||
|  | ||||
|         gguf_writer.add_tensor(new_name, data) | ||||
|             gguf_writer.add_tensor(new_name, data) | ||||
|  | ||||
|  | ||||
| print("gguf: write header") | ||||
|   | ||||
		Reference in New Issue
	
	Block a user
	 cebtenzzre
					cebtenzzre