mirror of
				https://github.com/ggml-org/llama.cpp.git
				synced 2025-11-03 09:22:01 +00:00 
			
		
		
		
	convert : update Falcon script for new HF config (#3448)
Also adds Falcon-180B support. Closes #3049 Co-authored-by: jb <jonathan.t.barnard@gmail.com>
This commit is contained in:
		@@ -4,6 +4,7 @@
 | 
			
		||||
from __future__ import annotations
 | 
			
		||||
 | 
			
		||||
import argparse
 | 
			
		||||
import contextlib
 | 
			
		||||
import json
 | 
			
		||||
import os
 | 
			
		||||
import struct
 | 
			
		||||
@@ -20,10 +21,10 @@ if 'NO_LOCAL_GGUF' not in os.environ:
 | 
			
		||||
import gguf
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
def count_model_parts(dir_model: Path) -> int:
 | 
			
		||||
def count_model_parts(dir_model: Path, prefix: str) -> int:
 | 
			
		||||
    num_parts = 0
 | 
			
		||||
    for filename in os.listdir(dir_model):
 | 
			
		||||
        if filename.startswith("pytorch_model-"):
 | 
			
		||||
        if filename.startswith(prefix):
 | 
			
		||||
            num_parts += 1
 | 
			
		||||
 | 
			
		||||
    if num_parts > 0:
 | 
			
		||||
@@ -77,20 +78,26 @@ print("gguf: loading model "+dir_model.name)
 | 
			
		||||
with open(dir_model / "config.json", "r", encoding="utf-8") as f:
 | 
			
		||||
    hparams = json.load(f)
 | 
			
		||||
 | 
			
		||||
if hparams["architectures"][0] != "RWForCausalLM":
 | 
			
		||||
if hparams["architectures"][0] != "FalconForCausalLM":
 | 
			
		||||
    print("Model architecture not supported: " + hparams["architectures"][0])
 | 
			
		||||
 | 
			
		||||
    sys.exit(1)
 | 
			
		||||
 | 
			
		||||
# get number of model parts
 | 
			
		||||
num_parts = count_model_parts(dir_model)
 | 
			
		||||
num_parts = count_model_parts(dir_model, "model-00")
 | 
			
		||||
if num_parts:
 | 
			
		||||
    is_safetensors = True
 | 
			
		||||
    from safetensors import safe_open
 | 
			
		||||
else:
 | 
			
		||||
    is_safetensors = False
 | 
			
		||||
    num_parts = count_model_parts(dir_model, "pytorch_model-")
 | 
			
		||||
 | 
			
		||||
ARCH=gguf.MODEL_ARCH.FALCON
 | 
			
		||||
gguf_writer = gguf.GGUFWriter(fname_out, gguf.MODEL_ARCH_NAMES[ARCH])
 | 
			
		||||
 | 
			
		||||
print("gguf: get model metadata")
 | 
			
		||||
 | 
			
		||||
block_count = hparams["n_layer"]
 | 
			
		||||
block_count = hparams["num_hidden_layers"]
 | 
			
		||||
 | 
			
		||||
gguf_writer.add_name("Falcon")
 | 
			
		||||
gguf_writer.add_context_length(2048) # not in config.json
 | 
			
		||||
@@ -98,9 +105,9 @@ gguf_writer.add_tensor_data_layout("jploski") # qkv tensor transform
 | 
			
		||||
gguf_writer.add_embedding_length(hparams["hidden_size"])
 | 
			
		||||
gguf_writer.add_feed_forward_length(4 * hparams["hidden_size"])
 | 
			
		||||
gguf_writer.add_block_count(block_count)
 | 
			
		||||
gguf_writer.add_head_count(hparams["n_head"])
 | 
			
		||||
if "n_head_kv" in hparams:
 | 
			
		||||
    gguf_writer.add_head_count_kv(hparams["n_head_kv"])
 | 
			
		||||
gguf_writer.add_head_count(hparams["num_attention_heads"])
 | 
			
		||||
if "num_kv_heads" in hparams:
 | 
			
		||||
    gguf_writer.add_head_count_kv(hparams["num_kv_heads"])
 | 
			
		||||
else:
 | 
			
		||||
    gguf_writer.add_head_count_kv(1)
 | 
			
		||||
gguf_writer.add_layer_norm_eps(hparams["layer_norm_epsilon"])
 | 
			
		||||
@@ -146,8 +153,8 @@ special_vocab.add_to_gguf(gguf_writer)
 | 
			
		||||
tensor_map = gguf.get_tensor_name_map(ARCH,block_count)
 | 
			
		||||
 | 
			
		||||
# params for qkv transform
 | 
			
		||||
n_head    = hparams["n_head"]
 | 
			
		||||
n_head_kv = hparams["n_head_kv"] if "n_head_kv" in hparams else 1
 | 
			
		||||
n_head    = hparams["num_attention_heads"]
 | 
			
		||||
n_head_kv = hparams["num_kv_heads"] if "num_kv_heads" in hparams else 1
 | 
			
		||||
 | 
			
		||||
head_dim = hparams["hidden_size"] // n_head
 | 
			
		||||
 | 
			
		||||
@@ -156,6 +163,10 @@ print("gguf: get tensor metadata")
 | 
			
		||||
 | 
			
		||||
if num_parts == 0:
 | 
			
		||||
    part_names = iter(("pytorch_model.bin",))
 | 
			
		||||
elif is_safetensors:
 | 
			
		||||
    part_names = (
 | 
			
		||||
        f"model-{n:05}-of-{num_parts:05}.safetensors" for n in range(1, num_parts + 1)
 | 
			
		||||
    )
 | 
			
		||||
else:
 | 
			
		||||
    part_names = (
 | 
			
		||||
        f"pytorch_model-{n:05}-of-{num_parts:05}.bin" for n in range(1, num_parts + 1)
 | 
			
		||||
@@ -165,60 +176,64 @@ for part_name in part_names:
 | 
			
		||||
    if args.vocab_only:
 | 
			
		||||
        break
 | 
			
		||||
    print("gguf: loading model part '" + part_name + "'")
 | 
			
		||||
    model_part = torch.load(dir_model / part_name, map_location="cpu")
 | 
			
		||||
    if is_safetensors:
 | 
			
		||||
        ctx = safe_open(dir_model / part_name, framework="pt", device="cpu")
 | 
			
		||||
    else:
 | 
			
		||||
        ctx = contextlib.nullcontext(torch.load(dir_model / part_name, map_location="cpu"))
 | 
			
		||||
 | 
			
		||||
    for name in model_part.keys():
 | 
			
		||||
        data = model_part[name]
 | 
			
		||||
    with ctx as model_part:
 | 
			
		||||
        for name in model_part.keys():
 | 
			
		||||
            data = model_part.get_tensor(name) if is_safetensors else model_part[name]
 | 
			
		||||
 | 
			
		||||
        old_dtype = data.dtype
 | 
			
		||||
            old_dtype = data.dtype
 | 
			
		||||
 | 
			
		||||
        # convert any unsupported data types to float32
 | 
			
		||||
        if data.dtype != torch.float16 and data.dtype != torch.float32:
 | 
			
		||||
            data = data.to(torch.float32)
 | 
			
		||||
            # convert any unsupported data types to float32
 | 
			
		||||
            if data.dtype != torch.float16 and data.dtype != torch.float32:
 | 
			
		||||
                data = data.to(torch.float32)
 | 
			
		||||
 | 
			
		||||
        # QKV tensor transform
 | 
			
		||||
        # The original query_key_value tensor contains n_head_kv "kv groups",
 | 
			
		||||
        # each consisting of n_head/n_head_kv query weights followed by one key
 | 
			
		||||
        # and one value weight (shared by all query heads in the kv group).
 | 
			
		||||
        # This layout makes it a big pain to work with in GGML.
 | 
			
		||||
        # So we rearrange them here,, so that we have n_head query weights
 | 
			
		||||
        # followed by n_head_kv key weights followed by n_head_kv value weights,
 | 
			
		||||
        # in contiguous fashion.
 | 
			
		||||
        # ref: https://github.com/jploski/ggml/blob/falcon40b/examples/falcon/convert-hf-to-ggml.py
 | 
			
		||||
            # QKV tensor transform
 | 
			
		||||
            # The original query_key_value tensor contains n_head_kv "kv groups",
 | 
			
		||||
            # each consisting of n_head/n_head_kv query weights followed by one key
 | 
			
		||||
            # and one value weight (shared by all query heads in the kv group).
 | 
			
		||||
            # This layout makes it a big pain to work with in GGML.
 | 
			
		||||
            # So we rearrange them here,, so that we have n_head query weights
 | 
			
		||||
            # followed by n_head_kv key weights followed by n_head_kv value weights,
 | 
			
		||||
            # in contiguous fashion.
 | 
			
		||||
            # ref: https://github.com/jploski/ggml/blob/falcon40b/examples/falcon/convert-hf-to-ggml.py
 | 
			
		||||
 | 
			
		||||
        if "query_key_value" in name:
 | 
			
		||||
            qkv = data.view(n_head_kv, n_head // n_head_kv + 2, head_dim, head_dim * n_head)
 | 
			
		||||
            q = qkv[:, :-2 ].reshape(n_head * head_dim, head_dim * n_head)
 | 
			
		||||
            k = qkv[:, [-2]].reshape(n_head_kv * head_dim, head_dim * n_head)
 | 
			
		||||
            v = qkv[:, [-1]].reshape(n_head_kv * head_dim, head_dim * n_head)
 | 
			
		||||
            data = torch.cat((q,k,v)).reshape_as(data)
 | 
			
		||||
            if "query_key_value" in name:
 | 
			
		||||
                qkv = data.view(n_head_kv, n_head // n_head_kv + 2, head_dim, head_dim * n_head)
 | 
			
		||||
                q = qkv[:, :-2 ].reshape(n_head * head_dim, head_dim * n_head)
 | 
			
		||||
                k = qkv[:, [-2]].reshape(n_head_kv * head_dim, head_dim * n_head)
 | 
			
		||||
                v = qkv[:, [-1]].reshape(n_head_kv * head_dim, head_dim * n_head)
 | 
			
		||||
                data = torch.cat((q,k,v)).reshape_as(data)
 | 
			
		||||
 | 
			
		||||
        data = data.squeeze().numpy()
 | 
			
		||||
            data = data.squeeze().numpy()
 | 
			
		||||
 | 
			
		||||
        # map tensor names
 | 
			
		||||
        new_name = tensor_map.get_name(name, try_suffixes = (".weight", ".bias"))
 | 
			
		||||
        if new_name is None:
 | 
			
		||||
            print("Can not map tensor '" + name + "'")
 | 
			
		||||
            sys.exit()
 | 
			
		||||
            # map tensor names
 | 
			
		||||
            new_name = tensor_map.get_name(name, try_suffixes = (".weight", ".bias"))
 | 
			
		||||
            if new_name is None:
 | 
			
		||||
                print("Can not map tensor '" + name + "'")
 | 
			
		||||
                sys.exit()
 | 
			
		||||
 | 
			
		||||
        n_dims = len(data.shape)
 | 
			
		||||
        data_dtype = data.dtype
 | 
			
		||||
            n_dims = len(data.shape)
 | 
			
		||||
            data_dtype = data.dtype
 | 
			
		||||
 | 
			
		||||
        # if f32 desired, convert any float16 to float32
 | 
			
		||||
        if ftype == 0 and data_dtype == np.float16:
 | 
			
		||||
            data = data.astype(np.float32)
 | 
			
		||||
            # if f32 desired, convert any float16 to float32
 | 
			
		||||
            if ftype == 0 and data_dtype == np.float16:
 | 
			
		||||
                data = data.astype(np.float32)
 | 
			
		||||
 | 
			
		||||
        # TODO: Why cant we use these float16 as-is? There should be not reason to store float16 as float32
 | 
			
		||||
        if ftype == 1 and data_dtype == np.float16 and n_dims == 1:
 | 
			
		||||
            data = data.astype(np.float32)
 | 
			
		||||
            # TODO: Why cant we use these float16 as-is? There should be not reason to store float16 as float32
 | 
			
		||||
            if ftype == 1 and data_dtype == np.float16 and n_dims == 1:
 | 
			
		||||
                data = data.astype(np.float32)
 | 
			
		||||
 | 
			
		||||
        # if f16 desired, convert any float32 2-dim weight tensors to float16
 | 
			
		||||
        if ftype == 1 and data_dtype == np.float32 and name.endswith(".weight") and n_dims == 2:
 | 
			
		||||
            data = data.astype(np.float16)
 | 
			
		||||
            # if f16 desired, convert any float32 2-dim weight tensors to float16
 | 
			
		||||
            if ftype == 1 and data_dtype == np.float32 and name.endswith(".weight") and n_dims == 2:
 | 
			
		||||
                data = data.astype(np.float16)
 | 
			
		||||
 | 
			
		||||
        print(new_name + ", n_dims = " + str(n_dims) + ", " + str(old_dtype) + " --> " + str(data.dtype))
 | 
			
		||||
            print(new_name + ", n_dims = " + str(n_dims) + ", " + str(old_dtype) + " --> " + str(data.dtype))
 | 
			
		||||
 | 
			
		||||
        gguf_writer.add_tensor(new_name, data)
 | 
			
		||||
            gguf_writer.add_tensor(new_name, data)
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
print("gguf: write header")
 | 
			
		||||
 
 | 
			
		||||
		Reference in New Issue
	
	Block a user