clip: implement minicpm-v sinusoidal embd using GGML (#17036)

* clip: implement minicpm-v sinusoidal embd using GGML

* fix repeat op
This commit is contained in:
Xuan-Son Nguyen
2025-11-06 11:02:54 +01:00
committed by GitHub
parent 9d7c518d64
commit 4882f0ff78

View File

@@ -1083,16 +1083,24 @@ struct clip_graph {
}
ggml_cgraph * build_minicpmv() {
const int batch_size = 1;
GGML_ASSERT(model.class_embedding == nullptr);
const int n_pos = n_patches;
const int n_pos = n_patches;
const int n_embd_proj = clip_n_mmproj_embd(ctx);
// position embeddings for the projector (not for ViT)
int n_output_dim = clip_n_mmproj_embd(ctx);
ggml_tensor * pos_embed = ggml_new_tensor_3d(ctx0, GGML_TYPE_F32, n_output_dim, n_pos, batch_size);
ggml_set_name(pos_embed, "pos_embed");
ggml_set_input(pos_embed);
// see: https://huggingface.co/openbmb/MiniCPM-o-2_6/blob/main/resampler.py#L70
// base frequency omega
ggml_tensor * omega = ggml_new_tensor_1d(ctx0, GGML_TYPE_F32, n_embd_proj / 4);
ggml_set_name(omega, "omega");
ggml_set_input(omega);
// 2D input positions (using float for sinusoidal embeddings)
ggml_tensor * pos_h = ggml_new_tensor_2d(ctx0, GGML_TYPE_F32, 1, n_pos);
ggml_set_name(pos_h, "pos_h");
ggml_set_input(pos_h);
ggml_tensor * pos_w = ggml_new_tensor_2d(ctx0, GGML_TYPE_F32, 1, n_pos);
ggml_set_name(pos_w, "pos_w");
ggml_set_input(pos_w);
// for selecting learned pos embd, used by ViT
struct ggml_tensor * positions = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, n_pos);
@@ -1103,7 +1111,7 @@ struct clip_graph {
ggml_tensor * inp = build_inp();
ggml_tensor * embeddings = build_vit(
inp, n_patches,
inp, n_pos,
NORM_TYPE_NORMAL,
hparams.ffn_op,
learned_pos_embd,
@@ -1115,17 +1123,39 @@ struct clip_graph {
ggml_tensor * v = ggml_mul_mat(ctx0, model.mm_model_kv_proj, embeddings);
// norm
q = build_norm(q, model.mm_model_ln_q_w, model.mm_model_ln_q_b, NORM_TYPE_NORMAL, eps, -1);
q = build_norm(q, model.mm_model_ln_q_w, model.mm_model_ln_q_b, NORM_TYPE_NORMAL, eps, -1);
v = build_norm(v, model.mm_model_ln_kv_w, model.mm_model_ln_kv_b, NORM_TYPE_NORMAL, eps, -1);
// calculate sinusoidal pos embd
ggml_tensor * pos_embed = nullptr;
{
// outer product
ggml_tensor * omega_b = ggml_repeat_4d(ctx0, omega, omega->ne[0], n_pos, 1, 1); // n_pos rows
ggml_tensor * theta_x = ggml_mul(ctx0, omega_b, pos_w);
ggml_tensor * theta_y = ggml_mul(ctx0, omega_b, pos_h);
// sin and cos
ggml_tensor * pos_embd_x = ggml_concat(
ctx0,
ggml_sin(ctx0, theta_x),
ggml_cos(ctx0, theta_x),
0 // concat on first dim
);
ggml_tensor * pos_embd_y = ggml_concat(
ctx0,
ggml_sin(ctx0, theta_y),
ggml_cos(ctx0, theta_y),
0 // concat on first dim
);
pos_embed = ggml_concat(ctx0, pos_embd_x, pos_embd_y, 0);
}
// k = v + pos_embed
ggml_tensor * k = ggml_add(ctx0, v, pos_embed);
// attention
{
int n_embd = clip_n_mmproj_embd(ctx);
const int d_head = 128;
int n_head = n_embd/d_head;
int n_head = n_embd_proj/d_head;
// Use actual config value if available, otherwise fall back to hardcoded values
int num_query = ctx->model.hparams.minicpmv_query_num;
ggml_tensor * Q = ggml_add(ctx0,
@@ -4564,92 +4594,6 @@ int clip_n_output_tokens(const struct clip_ctx * ctx, struct clip_image_f32 * im
return n_patches;
}
static std::vector<std::vector<std::vector<float>>> get_1d_sincos_pos_embed_from_grid_new(int embed_dim, const std::vector<std::vector<float>> & pos) {
assert(embed_dim % 2 == 0);
int H = pos.size();
int W = pos[0].size();
std::vector<float> omega(embed_dim / 2);
for (int i = 0; i < embed_dim / 2; ++i) {
omega[i] = 1.0 / pow(10000.0, static_cast<float>(i) / (embed_dim / 2));
}
std::vector<std::vector<std::vector<float>>> emb(H, std::vector<std::vector<float>>(W, std::vector<float>(embed_dim)));
for (int h = 0; h < H; ++h) {
for (int w = 0; w < W; ++w) {
for (int d = 0; d < embed_dim / 2; ++d) {
float out_value = pos[h][w] * omega[d];
emb[h][w][d] = sin(out_value);
emb[h][w][d + embed_dim / 2] = cos(out_value);
}
}
}
return emb;
}
static std::vector<std::vector<std::vector<float>>> get_2d_sincos_pos_embed_from_grid(int embed_dim, const std::vector<std::vector<std::vector<float>>> & grid) {
assert(embed_dim % 2 == 0);
std::vector<std::vector<std::vector<float>>> emb_h = get_1d_sincos_pos_embed_from_grid_new(embed_dim / 2, grid[0]); // (H, W, D/2)
std::vector<std::vector<std::vector<float>>> emb_w = get_1d_sincos_pos_embed_from_grid_new(embed_dim / 2, grid[1]); // (H, W, D/2)
int H = emb_h.size();
int W = emb_h[0].size();
std::vector<std::vector<std::vector<float>>> emb(H, std::vector<std::vector<float>>(W, std::vector<float>(embed_dim)));
for (int h = 0; h < H; ++h) {
for (int w = 0; w < W; ++w) {
for (int d = 0; d < embed_dim / 2; ++d) {
emb[h][w][d] = emb_h[h][w][d];
emb[h][w][d + embed_dim / 2] = emb_w[h][w][d];
}
}
}
return emb;
}
static std::vector<std::vector<float>> get_2d_sincos_pos_embed(int embed_dim, const std::pair<int, int> image_size) {
int grid_h_size = image_size.first;
int grid_w_size = image_size.second;
std::vector<float> grid_h(grid_h_size);
std::vector<float> grid_w(grid_w_size);
for (int i = 0; i < grid_h_size; ++i) {
grid_h[i] = static_cast<float>(i);
}
for (int i = 0; i < grid_w_size; ++i) {
grid_w[i] = static_cast<float>(i);
}
std::vector<std::vector<float>> grid(grid_h_size, std::vector<float>(grid_w_size));
for (int h = 0; h < grid_h_size; ++h) {
for (int w = 0; w < grid_w_size; ++w) {
grid[h][w] = grid_w[w];
}
}
std::vector<std::vector<std::vector<float>>> grid_2d = {grid, grid};
for (int h = 0; h < grid_h_size; ++h) {
for (int w = 0; w < grid_w_size; ++w) {
grid_2d[0][h][w] = grid_h[h];
grid_2d[1][h][w] = grid_w[w];
}
}
std::vector<std::vector<std::vector<float>>> pos_embed_3d = get_2d_sincos_pos_embed_from_grid(embed_dim, grid_2d);
int H = image_size.first;
int W = image_size.second;
std::vector<std::vector<float>> pos_embed_2d(H * W, std::vector<float>(embed_dim));
for (int h = 0; h < H; ++h) {
for (int w = 0; w < W; ++w) {
pos_embed_2d[w * H + h] = pos_embed_3d[h][w];
}
}
return pos_embed_2d;
}
bool clip_image_encode(struct clip_ctx * ctx, const int n_threads, clip_image_f32 * img, float * vec) {
clip_image_f32_batch imgs;
clip_image_f32_ptr img_copy(clip_image_f32_init());
@@ -4788,22 +4732,28 @@ bool clip_image_batch_encode(clip_ctx * ctx, const int n_threads, const clip_ima
}
set_input_i32("positions", positions);
// inspired from resampler of Qwen-VL:
// -> https://huggingface.co/Qwen/Qwen-VL/tree/main
// -> https://huggingface.co/Qwen/Qwen-VL/blob/0547ed36a86561e2e42fecec8fd0c4f6953e33c4/visual.py#L23
int embed_dim = clip_n_mmproj_embd(ctx);
// TODO @ngxson : this is very inefficient, can we do this using ggml_sin and ggml_cos?
auto pos_embed_t = get_2d_sincos_pos_embed(embed_dim, std::make_pair(pos_w, pos_h));
std::vector<float> pos_embed(embed_dim * pos_w * pos_h);
for(int i = 0; i < pos_w * pos_h; ++i){
for(int j = 0; j < embed_dim; ++j){
pos_embed[i * embed_dim + j] = pos_embed_t[i][j];
}
// inputs for resampler projector
// set the 2D positions (using float for sinusoidal embedding)
int n_patches_per_col = image_size_width / patch_size;
std::vector<float> pos_data(n_pos);
// dimension H
for (int i = 0; i < n_pos; i++) {
pos_data[i] = static_cast<float>(i / n_patches_per_col);
}
set_input_f32("pos_embed", pos_embed);
set_input_f32("pos_h", pos_data);
// dimension W
for (int i = 0; i < n_pos; i++) {
pos_data[i] = static_cast<float>(i % n_patches_per_col);
}
set_input_f32("pos_w", pos_data);
// base frequency omega
const float base_freq = 10000.0f;
const int n_embd_proj = clip_n_mmproj_embd(ctx);
std::vector<float> omega(n_embd_proj / 4);
for (int i = 0; i < n_embd_proj / 4; ++i) {
omega[i] = 1.0f / std::pow(base_freq, static_cast<float>(i) / (n_embd_proj / 4));
}
set_input_f32("omega", omega);
} break;
case PROJECTOR_TYPE_QWEN2VL:
case PROJECTOR_TYPE_QWEN3VL: