mirror of
				https://github.com/ggml-org/llama.cpp.git
				synced 2025-10-31 08:51:55 +00:00 
			
		
		
		
	speculative : PoC for speeding-up inference via speculative sampling (#2926)
* speculative : initial example * speculative : print encoding speed * speculative : add --draft CLI arg
This commit is contained in:
		
							
								
								
									
										234
									
								
								examples/speculative/speculative.cpp
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										234
									
								
								examples/speculative/speculative.cpp
									
									
									
									
									
										Normal file
									
								
							| @@ -0,0 +1,234 @@ | ||||
| #ifndef _GNU_SOURCE | ||||
| #define _GNU_SOURCE | ||||
| #endif | ||||
|  | ||||
| #include "build-info.h" | ||||
|  | ||||
| #include "common.h" | ||||
| #include "llama.h" | ||||
|  | ||||
| #include <cmath> | ||||
| #include <cstdio> | ||||
| #include <string> | ||||
| #include <vector> | ||||
|  | ||||
| int main(int argc, char ** argv) { | ||||
|     gpt_params params; | ||||
|  | ||||
|     if (gpt_params_parse(argc, argv, params) == false) { | ||||
|         return 1; | ||||
|     } | ||||
|  | ||||
|     if (params.model_draft.empty()) { | ||||
|         fprintf(stderr, "%s: error: --model-draft is required\n", __func__); | ||||
|         return 1; | ||||
|     } | ||||
|  | ||||
| #ifndef LOG_DISABLE_LOGS | ||||
|     log_set_target(log_filename_generator("speculative", "log")); | ||||
|     LOG_TEE("Log start\n"); | ||||
|     log_dump_cmdline(argc, argv); | ||||
| #endif // LOG_DISABLE_LOGS | ||||
|  | ||||
|     // init llama.cpp | ||||
|     llama_backend_init(params.numa); | ||||
|  | ||||
|     llama_model * model_tgt = NULL; | ||||
|     llama_model * model_dft = NULL; | ||||
|  | ||||
|     llama_context * ctx_tgt = NULL; | ||||
|     llama_context * ctx_dft = NULL; | ||||
|  | ||||
|     // load the target model | ||||
|     params.perplexity = true; // HACK: enable logits_all = true | ||||
|     std::tie(model_tgt, ctx_tgt) = llama_init_from_gpt_params(params); | ||||
|  | ||||
|     // load the draft model | ||||
|     params.model = params.model_draft; | ||||
|     std::tie(model_dft, ctx_dft) = llama_init_from_gpt_params(params); | ||||
|  | ||||
|     // tokenize the prompt | ||||
|     std::vector<llama_token> inp; | ||||
|     inp = ::llama_tokenize(ctx_tgt, params.prompt, true); | ||||
|  | ||||
|     const int max_context_size     = llama_n_ctx(ctx_tgt); | ||||
|     const int max_tokens_list_size = max_context_size - 4; | ||||
|  | ||||
|     if ((int) inp.size() > max_tokens_list_size) { | ||||
|         fprintf(stderr, "%s: error: prompt too long (%d tokens, max %d)\n", __func__, (int) inp.size(), max_tokens_list_size); | ||||
|         return 1; | ||||
|     } | ||||
|  | ||||
|     fprintf(stderr, "\n\n"); | ||||
|  | ||||
|     for (auto id : inp) { | ||||
|         fprintf(stderr, "%s", llama_token_to_piece(ctx_tgt, id).c_str()); | ||||
|     } | ||||
|  | ||||
|     fflush(stderr); | ||||
|  | ||||
|     const int n_input = inp.size(); | ||||
|  | ||||
|     const auto t_enc_start = ggml_time_us(); | ||||
|  | ||||
|     // eval the prompt with both models | ||||
|     llama_eval(ctx_tgt,  inp.data(), int(inp.size() - 1), 0, params.n_threads); | ||||
|     llama_eval(ctx_tgt, &inp.back(),      1, inp.size() - 1, params.n_threads); | ||||
|     llama_eval(ctx_dft,  inp.data(),     int(inp.size()), 0, params.n_threads); | ||||
|  | ||||
|     const auto t_enc_end = ggml_time_us(); | ||||
|  | ||||
|     // the 2 models should have the same vocab | ||||
|     const int n_ctx   = llama_n_ctx(ctx_tgt); | ||||
|     const int n_vocab = llama_n_vocab(ctx_tgt); | ||||
|     //GGML_ASSERT(n_vocab == llama_n_vocab(ctx_dft)); | ||||
|  | ||||
|     // how many tokens to draft each time | ||||
|     const int n_draft = params.n_draft; | ||||
|  | ||||
|     int n_predict = 0; | ||||
|     int n_drafted = 0; | ||||
|     int n_accept  = 0; | ||||
|  | ||||
|     int n_past_tgt = inp.size(); | ||||
|     int n_past_dft = inp.size(); | ||||
|  | ||||
|     std::vector<llama_token> drafted; | ||||
|  | ||||
|     std::vector<llama_token> last_tokens(n_ctx); | ||||
|     std::fill(last_tokens.begin(), last_tokens.end(), 0); | ||||
|  | ||||
|     for (auto & id : inp) { | ||||
|         last_tokens.erase(last_tokens.begin()); | ||||
|         last_tokens.push_back(id); | ||||
|     } | ||||
|  | ||||
|     std::vector<llama_token_data> candidates; | ||||
|     candidates.reserve(n_vocab); | ||||
|  | ||||
|     // used to determine end of generation | ||||
|     bool has_eos = false; | ||||
|  | ||||
|     const auto t_dec_start = ggml_time_us(); | ||||
|  | ||||
|     while (true) { | ||||
|         LOG("drafted: %s\n", LOG_TOKENS_TOSTR_PRETTY(ctx_dft, drafted)); | ||||
|  | ||||
|         // sample from the drafted tokens if any | ||||
|         int i_dft = 0; | ||||
|         while (true) { | ||||
|             const llama_token id = llama_sample_token(ctx_tgt, NULL, NULL, params, last_tokens, candidates, i_dft); | ||||
|  | ||||
|             last_tokens.erase(last_tokens.begin()); | ||||
|             last_tokens.push_back(id); | ||||
|  | ||||
|             //LOG("last: %s\n", LOG_TOKENS_TOSTR_PRETTY(ctx_tgt, last_tokens)); | ||||
|  | ||||
|             const std::string token_str = llama_token_to_piece(ctx_tgt, id); | ||||
|             printf("%s", token_str.c_str()); | ||||
|             fflush(stdout); | ||||
|  | ||||
|             if (id == llama_token_eos(ctx_tgt)) { | ||||
|                 has_eos = true; | ||||
|             } | ||||
|  | ||||
|             ++n_predict; | ||||
|  | ||||
|             if (i_dft < (int) drafted.size() && id == drafted[i_dft]) { | ||||
|                 LOG("drafted token %d accepted\n", id); | ||||
|                 ++n_accept; | ||||
|                 ++n_past_tgt; | ||||
|                 ++n_past_dft; | ||||
|                 ++i_dft; | ||||
|  | ||||
|                 continue; | ||||
|             } | ||||
|  | ||||
|             // the drafted token was rejected or we are out of drafted tokens | ||||
|             llama_eval(ctx_dft, &id, 1, n_past_dft, params.n_threads); | ||||
|             ++n_past_dft; | ||||
|  | ||||
|             drafted.clear(); | ||||
|             drafted.push_back(id); | ||||
|  | ||||
|             break; | ||||
|         } | ||||
|  | ||||
|         if (n_predict > params.n_predict || has_eos) { | ||||
|             break; | ||||
|         } | ||||
|  | ||||
|         // sample n_draft tokens from the draft model picking the best token | ||||
|         int n_past_cur = n_past_dft; | ||||
|         for (int i = 0; i < n_draft; ++i) { | ||||
|             float * logits = llama_get_logits(ctx_dft); | ||||
|  | ||||
|             candidates.clear(); | ||||
|             for (llama_token token_id = 0; token_id < n_vocab; token_id++) { | ||||
|                 candidates.emplace_back(llama_token_data{token_id, logits[token_id], 0.0f}); | ||||
|             } | ||||
|  | ||||
|             llama_token_data_array cur_p = { candidates.data(), candidates.size(), false }; | ||||
|  | ||||
|             // computes softmax and sorts the candidates | ||||
|             llama_sample_softmax(ctx_dft, &cur_p); | ||||
|  | ||||
|             for (int i = 0; i < 3; ++i) { | ||||
|                 LOG(" - draft candidate %d: %d (%.3f)\n", i, cur_p.data[i].id, cur_p.data[i].p); | ||||
|             } | ||||
|  | ||||
|             // too low probability, stop drafting | ||||
|             if (cur_p.data[0].p < 2*cur_p.data[1].p) { | ||||
|                 break; | ||||
|             } | ||||
|  | ||||
|             drafted.push_back(cur_p.data[0].id); | ||||
|             ++n_drafted; | ||||
|  | ||||
|             if (i < n_draft - 1) { | ||||
|                 // evaluate the drafted token on the draft model | ||||
|                 llama_eval(ctx_dft, &drafted.back(), 1, n_past_cur, params.n_threads); | ||||
|                 ++n_past_cur; | ||||
|             } | ||||
|         } | ||||
|  | ||||
|         // evaluate the target model on the drafted tokens | ||||
|         llama_eval(ctx_tgt, drafted.data(), drafted.size(), n_past_tgt, params.n_threads); | ||||
|         ++n_past_tgt; | ||||
|  | ||||
|         drafted.erase(drafted.begin()); | ||||
|     } | ||||
|  | ||||
|     auto t_dec_end = ggml_time_us(); | ||||
|  | ||||
|     LOG_TEE("\n\n"); | ||||
|  | ||||
|     LOG_TEE("encoded %4d tokens in %8.3f seconds, speed: %8.3f t/s\n", n_input,   (t_enc_end - t_enc_start) / 1e6f, inp.size() / ((t_enc_end - t_enc_start) / 1e6f)); | ||||
|     LOG_TEE("decoded %4d tokens in %8.3f seconds, speed: %8.3f t/s\n", n_predict, (t_dec_end - t_dec_start) / 1e6f, n_predict / ((t_dec_end - t_dec_start) / 1e6f)); | ||||
|  | ||||
|     // TODO: make sure these numbers are computed correctly | ||||
|     LOG_TEE("\n"); | ||||
|     LOG_TEE("n_draft   = %d\n", n_draft); | ||||
|     LOG_TEE("n_predict = %d\n", n_predict); | ||||
|     LOG_TEE("n_drafted = %d\n", n_drafted); | ||||
|     LOG_TEE("n_accept  = %d\n", n_accept); | ||||
|     LOG_TEE("accept    = %.3f%%\n", 100.0f * n_accept / n_drafted); | ||||
|  | ||||
|     LOG_TEE("\ndraft:\n"); | ||||
|     llama_print_timings(ctx_dft); | ||||
|  | ||||
|     LOG_TEE("\ntarget:\n"); | ||||
|     llama_print_timings(ctx_tgt); | ||||
|  | ||||
|     llama_free(ctx_tgt); | ||||
|     llama_free_model(model_tgt); | ||||
|  | ||||
|     llama_free(ctx_dft); | ||||
|     llama_free_model(model_dft); | ||||
|  | ||||
|     llama_backend_free(); | ||||
|  | ||||
|     fprintf(stderr, "\n\n"); | ||||
|  | ||||
|     return 0; | ||||
| } | ||||
		Reference in New Issue
	
	Block a user
	 Georgi Gerganov
					Georgi Gerganov