mirror of
				https://github.com/ggml-org/llama.cpp.git
				synced 2025-10-30 08:42:00 +00:00 
			
		
		
		
	cuda : supports running on CPU for GGML_USE_CUBLAS=ON build (#3946)
* protyping the idea that supports running on CPU for a GGML_USE_CUBLAS=on build * doc: add comments to ggml_cublas_loaded() * fix defined(...)
This commit is contained in:
		
							
								
								
									
										17
									
								
								ggml-cuda.cu
									
									
									
									
									
								
							
							
						
						
									
										17
									
								
								ggml-cuda.cu
									
									
									
									
									
								
							| @@ -5790,6 +5790,11 @@ static void ggml_cuda_pool_free(void * ptr, size_t size) { | ||||
|     CUDA_CHECK(cudaFree(ptr)); | ||||
| } | ||||
|  | ||||
| static bool g_cublas_loaded = false; | ||||
|  | ||||
| bool ggml_cublas_loaded(void) { | ||||
|     return g_cublas_loaded; | ||||
| } | ||||
|  | ||||
| void ggml_init_cublas() { | ||||
|     static bool initialized = false; | ||||
| @@ -5803,7 +5808,12 @@ void ggml_init_cublas() { | ||||
|         CUDA_CHECK(cudaDeviceSynchronize()); | ||||
| #endif | ||||
|  | ||||
|         CUDA_CHECK(cudaGetDeviceCount(&g_device_count)); | ||||
|         if (cudaGetDeviceCount(&g_device_count) != cudaSuccess) { | ||||
|             initialized = true; | ||||
|             g_cublas_loaded = false; | ||||
|             return; | ||||
|         } | ||||
|  | ||||
|         GGML_ASSERT(g_device_count <= GGML_CUDA_MAX_DEVICES); | ||||
|         int64_t total_vram = 0; | ||||
| #if defined(GGML_CUDA_FORCE_MMQ) | ||||
| @@ -5851,6 +5861,7 @@ void ggml_init_cublas() { | ||||
|         // CUBLAS_CHECK(cublasLoggerConfigure(1, 1, 0, nullptr)); | ||||
|  | ||||
|         initialized = true; | ||||
|         g_cublas_loaded = true; | ||||
|     } | ||||
| } | ||||
|  | ||||
| @@ -7158,6 +7169,8 @@ static void ggml_cuda_rms_norm(const ggml_tensor * src0, const ggml_tensor * src | ||||
| } | ||||
|  | ||||
| bool ggml_cuda_can_mul_mat(const struct ggml_tensor * src0, const struct ggml_tensor * src1, struct ggml_tensor * dst) { | ||||
|     if (!g_cublas_loaded) return false; | ||||
|  | ||||
|     const int64_t ne10 = src1->ne[0]; | ||||
|  | ||||
|     const int64_t ne0 = dst->ne[0]; | ||||
| @@ -7843,6 +7856,8 @@ void ggml_cuda_free_scratch() { | ||||
| } | ||||
|  | ||||
| bool ggml_cuda_compute_forward(struct ggml_compute_params * params, struct ggml_tensor * tensor) { | ||||
|     if (!g_cublas_loaded) return false; | ||||
|  | ||||
|     ggml_cuda_func_t func; | ||||
|     const bool any_on_device = tensor->backend == GGML_BACKEND_GPU | ||||
|         || (tensor->src[0] != nullptr && (tensor->src[0]->backend == GGML_BACKEND_GPU || tensor->src[0]->backend == GGML_BACKEND_GPU_SPLIT)) | ||||
|   | ||||
| @@ -17,7 +17,12 @@ extern "C" { | ||||
|  | ||||
| #define GGML_CUDA_MAX_DEVICES       16 | ||||
|  | ||||
| // Always success. To check if CUDA is actually loaded, use `ggml_cublas_loaded`. | ||||
| GGML_API void   ggml_init_cublas(void); | ||||
|  | ||||
| // Returns `true` if there are available CUDA devices and cublas loads successfully; otherwise, it returns `false`. | ||||
| GGML_API bool   ggml_cublas_loaded(void); | ||||
|  | ||||
| GGML_API void * ggml_cuda_host_malloc(size_t size); | ||||
| GGML_API void   ggml_cuda_host_free(void * ptr); | ||||
|  | ||||
|   | ||||
							
								
								
									
										181
									
								
								llama.cpp
									
									
									
									
									
								
							
							
						
						
									
										181
									
								
								llama.cpp
									
									
									
									
									
								
							| @@ -596,19 +596,37 @@ static void ggml_graph_compute_helper(std::vector<uint8_t> & buf, ggml_cgraph * | ||||
| // llama helpers | ||||
| // | ||||
|  | ||||
| inline void * llama_host_malloc(size_t n) { | ||||
| #ifdef GGML_USE_CUBLAS | ||||
| #   define llama_host_malloc(n)  ggml_cuda_host_malloc(n) | ||||
| #   define llama_host_free(data) ggml_cuda_host_free(data) | ||||
|     if (ggml_cublas_loaded()) { | ||||
|         return ggml_cuda_host_malloc(n); | ||||
|     } else { | ||||
|         return malloc(n); | ||||
|     } | ||||
| #elif GGML_USE_METAL | ||||
| #   define llama_host_malloc(n)  ggml_metal_host_malloc(n) | ||||
| #   define llama_host_free(data) ggml_metal_host_free(data) | ||||
|     return ggml_metal_host_malloc(n); | ||||
| #elif GGML_USE_CPU_HBM | ||||
| #   define llama_host_malloc(n)  hbw_malloc(n) | ||||
| #   define llama_host_free(data) if (data != NULL) hbw_free(data) | ||||
|     return hbw_malloc(n); | ||||
| #else | ||||
| #   define llama_host_malloc(n)  malloc(n) | ||||
| #   define llama_host_free(data) free(data) | ||||
|     return malloc(n); | ||||
| #endif | ||||
| } | ||||
|  | ||||
| inline void llama_host_free(void * ptr) { | ||||
| #ifdef GGML_USE_CUBLAS | ||||
|     if (ggml_cublas_loaded()) { | ||||
|         return ggml_cuda_host_free(ptr); | ||||
|     } else { | ||||
|         return free(ptr); | ||||
|     } | ||||
| #elif GGML_USE_METAL | ||||
|     return ggml_metal_host_free(ptr); | ||||
| #elif GGML_USE_CPU_HBM | ||||
|     return hbw_free(ptr); | ||||
| #else | ||||
|     return free(ptr); | ||||
| #endif | ||||
| } | ||||
|  | ||||
| #if defined(_WIN32) | ||||
| static std::string llama_format_win_err(DWORD err) { | ||||
| @@ -1200,9 +1218,11 @@ struct llama_kv_cache { | ||||
|         } | ||||
|  | ||||
| #ifdef GGML_USE_CUBLAS | ||||
|         ggml_cuda_free_data(k); | ||||
|         ggml_cuda_free_data(v); | ||||
| #endif // GGML_USE_CUBLAS | ||||
|         if (ggml_cublas_loaded()) { | ||||
|             ggml_cuda_free_data(k); | ||||
|             ggml_cuda_free_data(v); | ||||
|         } | ||||
| #endif | ||||
|     } | ||||
| }; | ||||
|  | ||||
| @@ -1302,11 +1322,15 @@ struct llama_model { | ||||
|         } | ||||
|  | ||||
| #ifdef GGML_USE_CUBLAS | ||||
|         for (size_t i = 0; i < tensors_by_name.size(); ++i) { | ||||
|             ggml_cuda_free_data(tensors_by_name[i].second); | ||||
|         if (ggml_cublas_loaded()) { | ||||
|             for (size_t i = 0; i < tensors_by_name.size(); ++i) { | ||||
|                 ggml_cuda_free_data(tensors_by_name[i].second); | ||||
|             } | ||||
|             ggml_cuda_free_scratch(); | ||||
|         } | ||||
|         ggml_cuda_free_scratch(); | ||||
| #elif defined(GGML_USE_CLBLAST) | ||||
| #endif | ||||
|  | ||||
| #if defined(GGML_USE_CLBLAST) | ||||
|         for (size_t i = 0; i < tensors_by_name.size(); ++i) { | ||||
|             ggml_cl_free_data(tensors_by_name[i].second); | ||||
|         } | ||||
| @@ -1418,23 +1442,26 @@ static bool llama_kv_cache_init( | ||||
|     ggml_set_name(cache.v, "cache_v"); | ||||
|  | ||||
|     (void) n_gpu_layers; | ||||
| #ifdef GGML_USE_CUBLAS | ||||
|     size_t vram_kv_cache = 0; | ||||
|  | ||||
|     if (n_gpu_layers > (int)n_layer + 1) { | ||||
|         ggml_cuda_assign_buffers_no_scratch(cache.v); | ||||
|         LLAMA_LOG_INFO("%s: offloading v cache to GPU\n", __func__); | ||||
|         vram_kv_cache += ggml_nbytes(cache.v); | ||||
| #ifdef GGML_USE_CUBLAS | ||||
|     if (ggml_cublas_loaded()) { | ||||
|         size_t vram_kv_cache = 0; | ||||
|  | ||||
|         if (n_gpu_layers > (int)n_layer + 1) { | ||||
|             ggml_cuda_assign_buffers_no_scratch(cache.v); | ||||
|             LLAMA_LOG_INFO("%s: offloading v cache to GPU\n", __func__); | ||||
|             vram_kv_cache += ggml_nbytes(cache.v); | ||||
|         } | ||||
|         if (n_gpu_layers > (int)n_layer + 2) { | ||||
|             ggml_cuda_assign_buffers_no_scratch(cache.k); | ||||
|             LLAMA_LOG_INFO("%s: offloading k cache to GPU\n", __func__); | ||||
|             vram_kv_cache += ggml_nbytes(cache.k); | ||||
|         } | ||||
|         if (vram_kv_cache > 0) { | ||||
|             LLAMA_LOG_INFO("%s: VRAM kv self = %.2f MB\n", __func__, vram_kv_cache / 1024.0 / 1024.0); | ||||
|         } | ||||
|     } | ||||
|     if (n_gpu_layers > (int)n_layer + 2) { | ||||
|         ggml_cuda_assign_buffers_no_scratch(cache.k); | ||||
|         LLAMA_LOG_INFO("%s: offloading k cache to GPU\n", __func__); | ||||
|         vram_kv_cache += ggml_nbytes(cache.k); | ||||
|     } | ||||
|     if (vram_kv_cache > 0) { | ||||
|         LLAMA_LOG_INFO("%s: VRAM kv self = %.2f MB\n", __func__, vram_kv_cache / 1024.0 / 1024.0); | ||||
|     } | ||||
| #endif // GGML_USE_CUBLAS | ||||
| #endif | ||||
|  | ||||
|     return true; | ||||
| } | ||||
| @@ -2521,18 +2548,22 @@ static void llm_load_tensors( | ||||
|     } | ||||
|  | ||||
|     (void) main_gpu; | ||||
|  | ||||
|     enum ggml_backend_type llama_backend_offload = GGML_BACKEND_CPU; | ||||
|     enum ggml_backend_type llama_backend_offload_split = GGML_BACKEND_CPU; | ||||
|  | ||||
| #ifdef GGML_USE_CUBLAS | ||||
|     LLAMA_LOG_INFO("%s: using " GGML_CUDA_NAME " for GPU acceleration\n", __func__); | ||||
|     ggml_cuda_set_main_device(main_gpu); | ||||
| #define LLAMA_BACKEND_OFFLOAD       GGML_BACKEND_GPU | ||||
| #define LLAMA_BACKEND_OFFLOAD_SPLIT GGML_BACKEND_GPU_SPLIT | ||||
|     if (ggml_cublas_loaded()) { | ||||
|         LLAMA_LOG_INFO("%s: using " GGML_CUDA_NAME " for GPU acceleration\n", __func__); | ||||
|         ggml_cuda_set_main_device(main_gpu); | ||||
|  | ||||
|         llama_backend_offload = GGML_BACKEND_GPU; | ||||
|         llama_backend_offload_split = GGML_BACKEND_GPU_SPLIT; | ||||
|     } | ||||
| #elif defined(GGML_USE_CLBLAST) | ||||
|     LLAMA_LOG_INFO("%s: using OpenCL for GPU acceleration\n", __func__); | ||||
| #define LLAMA_BACKEND_OFFLOAD       GGML_BACKEND_GPU | ||||
| #define LLAMA_BACKEND_OFFLOAD_SPLIT GGML_BACKEND_GPU | ||||
| #else | ||||
| #define LLAMA_BACKEND_OFFLOAD       GGML_BACKEND_CPU | ||||
| #define LLAMA_BACKEND_OFFLOAD_SPLIT GGML_BACKEND_CPU | ||||
|         LLAMA_LOG_INFO("%s: using OpenCL for GPU acceleration\n", __func__); | ||||
|         llama_backend_offload = GGML_BACKEND_GPU; | ||||
|         llama_backend_offload_split = GGML_BACKEND_GPU; | ||||
| #endif | ||||
|  | ||||
|     // prepare memory for the weights | ||||
| @@ -2559,12 +2590,12 @@ static void llm_load_tensors( | ||||
|                             // norm is not performance relevant on its own but keeping it in VRAM reduces data copying | ||||
|                             // on Windows however this is detrimental unless everything is on the GPU | ||||
| #ifndef _WIN32 | ||||
|                             backend_norm = LLAMA_BACKEND_OFFLOAD; | ||||
|                             backend_norm = llama_backend_offload; | ||||
| #else | ||||
|                             backend_norm = n_gpu_layers <= (int) n_layer + 2 ? GGML_BACKEND_CPU : LLAMA_BACKEND_OFFLOAD; | ||||
|                             backend_norm = n_gpu_layers <= (int) n_layer + 2 ? GGML_BACKEND_CPU : llama_backend_offload; | ||||
| #endif // _WIN32 | ||||
|  | ||||
|                             backend_output = LLAMA_BACKEND_OFFLOAD_SPLIT; | ||||
|                             backend_output = llama_backend_offload_split; | ||||
|                         } else { | ||||
|                             backend_norm   = GGML_BACKEND_CPU; | ||||
|                             backend_output = GGML_BACKEND_CPU; | ||||
| @@ -2588,8 +2619,8 @@ static void llm_load_tensors( | ||||
|                     model.layers.resize(n_layer); | ||||
|  | ||||
|                     for (uint32_t i = 0; i < n_layer; ++i) { | ||||
|                         const ggml_backend_type backend = int(i) < i_gpu_start ? GGML_BACKEND_CPU : LLAMA_BACKEND_OFFLOAD; // NOLINT | ||||
|                         const ggml_backend_type backend_split = int(i) < i_gpu_start ? GGML_BACKEND_CPU : LLAMA_BACKEND_OFFLOAD_SPLIT; // NOLINT | ||||
|                         const ggml_backend_type backend = int(i) < i_gpu_start ? GGML_BACKEND_CPU : llama_backend_offload; // NOLINT | ||||
|                         const ggml_backend_type backend_split = int(i) < i_gpu_start ? GGML_BACKEND_CPU : llama_backend_offload_split; // NOLINT | ||||
|  | ||||
|                         auto & layer = model.layers[i]; | ||||
|  | ||||
| @@ -2625,12 +2656,12 @@ static void llm_load_tensors( | ||||
|                             // norm is not performance relevant on its own but keeping it in VRAM reduces data copying | ||||
|                             // on Windows however this is detrimental unless everything is on the GPU | ||||
| #ifndef _WIN32 | ||||
|                             backend_norm = LLAMA_BACKEND_OFFLOAD; | ||||
|                             backend_norm = llama_backend_offload; | ||||
| #else | ||||
|                             backend_norm = n_gpu_layers <= (int) n_layer + 2 ? GGML_BACKEND_CPU : LLAMA_BACKEND_OFFLOAD; | ||||
|                             backend_norm = n_gpu_layers <= (int) n_layer + 2 ? GGML_BACKEND_CPU : llama_backend_offload; | ||||
| #endif // _WIN32 | ||||
|  | ||||
|                             backend_output = LLAMA_BACKEND_OFFLOAD_SPLIT; | ||||
|                             backend_output = llama_backend_offload_split; | ||||
|                         } else { | ||||
|                             backend_norm   = GGML_BACKEND_CPU; | ||||
|                             backend_output = GGML_BACKEND_CPU; | ||||
| @@ -2654,8 +2685,8 @@ static void llm_load_tensors( | ||||
|                     model.layers.resize(n_layer); | ||||
|  | ||||
|                     for (uint32_t i = 0; i < n_layer; ++i) { | ||||
|                         const ggml_backend_type backend = int(i) < i_gpu_start ? GGML_BACKEND_CPU : LLAMA_BACKEND_OFFLOAD; // NOLINT | ||||
|                         const ggml_backend_type backend_split = int(i) < i_gpu_start ? GGML_BACKEND_CPU : LLAMA_BACKEND_OFFLOAD_SPLIT; // NOLINT | ||||
|                         const ggml_backend_type backend = int(i) < i_gpu_start ? GGML_BACKEND_CPU : llama_backend_offload; // NOLINT | ||||
|                         const ggml_backend_type backend_split = int(i) < i_gpu_start ? GGML_BACKEND_CPU : llama_backend_offload_split; // NOLINT | ||||
|  | ||||
|                         auto & layer = model.layers[i]; | ||||
|  | ||||
| @@ -2695,12 +2726,12 @@ static void llm_load_tensors( | ||||
|                             // norm is not performance relevant on its own but keeping it in VRAM reduces data copying | ||||
|                             // on Windows however this is detrimental unless everything is on the GPU | ||||
| #ifndef _WIN32 | ||||
|                             backend_norm = LLAMA_BACKEND_OFFLOAD; | ||||
|                             backend_norm = llama_backend_offload; | ||||
| #else | ||||
|                             backend_norm = n_gpu_layers <= (int) n_layer + 2 ? GGML_BACKEND_CPU : LLAMA_BACKEND_OFFLOAD; | ||||
|                             backend_norm = n_gpu_layers <= (int) n_layer + 2 ? GGML_BACKEND_CPU : llama_backend_offload; | ||||
| #endif // _WIN32 | ||||
|  | ||||
|                             backend_output = LLAMA_BACKEND_OFFLOAD_SPLIT; | ||||
|                             backend_output = llama_backend_offload_split; | ||||
|                         } else { | ||||
|                             backend_norm   = GGML_BACKEND_CPU; | ||||
|                             backend_output = GGML_BACKEND_CPU; | ||||
| @@ -2726,8 +2757,8 @@ static void llm_load_tensors( | ||||
|                     model.layers.resize(n_layer); | ||||
|  | ||||
|                     for (uint32_t i = 0; i < n_layer; ++i) { | ||||
|                         const ggml_backend_type backend       = int(i) < i_gpu_start ? GGML_BACKEND_CPU : LLAMA_BACKEND_OFFLOAD; // NOLINT | ||||
|                         const ggml_backend_type backend_split = int(i) < i_gpu_start ? GGML_BACKEND_CPU : LLAMA_BACKEND_OFFLOAD_SPLIT; // NOLINT | ||||
|                         const ggml_backend_type backend       = int(i) < i_gpu_start ? GGML_BACKEND_CPU : llama_backend_offload; // NOLINT | ||||
|                         const ggml_backend_type backend_split = int(i) < i_gpu_start ? GGML_BACKEND_CPU : llama_backend_offload_split; // NOLINT | ||||
|  | ||||
|                         auto & layer = model.layers[i]; | ||||
|  | ||||
| @@ -2772,12 +2803,12 @@ static void llm_load_tensors( | ||||
|                             // norm is not performance relevant on its own but keeping it in VRAM reduces data copying | ||||
|                             // on Windows however this is detrimental unless everything is on the GPU | ||||
| #ifndef _WIN32 | ||||
|                             backend_norm = LLAMA_BACKEND_OFFLOAD; | ||||
|                             backend_norm = llama_backend_offload; | ||||
| #else | ||||
|                             backend_norm = n_gpu_layers <= (int) n_layer + 2 ? GGML_BACKEND_CPU : LLAMA_BACKEND_OFFLOAD; | ||||
|                             backend_norm = n_gpu_layers <= (int) n_layer + 2 ? GGML_BACKEND_CPU : llama_backend_offload; | ||||
| #endif // _WIN32 | ||||
|  | ||||
|                             backend_output = LLAMA_BACKEND_OFFLOAD_SPLIT; | ||||
|                             backend_output = llama_backend_offload_split; | ||||
|                         } else { | ||||
|                             backend_norm   = GGML_BACKEND_CPU; | ||||
|                             backend_output = GGML_BACKEND_CPU; | ||||
| @@ -2803,8 +2834,8 @@ static void llm_load_tensors( | ||||
|                     model.layers.resize(n_layer); | ||||
|  | ||||
|                     for (uint32_t i = 0; i < n_layer; ++i) { | ||||
|                         const ggml_backend_type backend       = int(i) < i_gpu_start ? GGML_BACKEND_CPU : LLAMA_BACKEND_OFFLOAD; // NOLINT | ||||
|                         const ggml_backend_type backend_split = int(i) < i_gpu_start ? GGML_BACKEND_CPU : LLAMA_BACKEND_OFFLOAD_SPLIT; // NOLINT | ||||
|                         const ggml_backend_type backend       = int(i) < i_gpu_start ? GGML_BACKEND_CPU : llama_backend_offload; // NOLINT | ||||
|                         const ggml_backend_type backend_split = int(i) < i_gpu_start ? GGML_BACKEND_CPU : llama_backend_offload_split; // NOLINT | ||||
|  | ||||
|                         auto & layer = model.layers[i]; | ||||
|  | ||||
| @@ -2849,12 +2880,12 @@ static void llm_load_tensors( | ||||
|                             // norm is not performance relevant on its own but keeping it in VRAM reduces data copying | ||||
|                             // on Windows however this is detrimental unless everything is on the GPU | ||||
| #ifndef _WIN32 | ||||
|                             backend_norm = LLAMA_BACKEND_OFFLOAD; | ||||
|                             backend_norm = llama_backend_offload; | ||||
| #else | ||||
|                             backend_norm = n_gpu_layers <= (int) n_layer + 2 ? GGML_BACKEND_CPU : LLAMA_BACKEND_OFFLOAD; | ||||
|                             backend_norm = n_gpu_layers <= (int) n_layer + 2 ? GGML_BACKEND_CPU : llama_backend_offload; | ||||
| #endif // _WIN32 | ||||
|  | ||||
|                             backend_output = LLAMA_BACKEND_OFFLOAD_SPLIT; | ||||
|                             backend_output = llama_backend_offload_split; | ||||
|                         } else { | ||||
|                             backend_norm   = GGML_BACKEND_CPU; | ||||
|                             backend_output = GGML_BACKEND_CPU; | ||||
| @@ -2877,8 +2908,8 @@ static void llm_load_tensors( | ||||
|                     const int i_gpu_start = n_layer - n_gpu_layers; | ||||
|                     model.layers.resize(n_layer); | ||||
|                     for (uint32_t i = 0; i < n_layer; ++i) { | ||||
|                         const ggml_backend_type backend = int(i) < i_gpu_start ? GGML_BACKEND_CPU : LLAMA_BACKEND_OFFLOAD; | ||||
|                         const ggml_backend_type backend_split = int(i) < i_gpu_start ? GGML_BACKEND_CPU : LLAMA_BACKEND_OFFLOAD_SPLIT; | ||||
|                         const ggml_backend_type backend = int(i) < i_gpu_start ? GGML_BACKEND_CPU : llama_backend_offload; | ||||
|                         const ggml_backend_type backend_split = int(i) < i_gpu_start ? GGML_BACKEND_CPU : llama_backend_offload_split; | ||||
|                         auto & layer = model.layers[i]; | ||||
|                         layer.attn_norm     = ml.create_tensor(ctx, tn(LLM_TENSOR_ATTN_NORM,   "weight", i), {n_embd}, backend); | ||||
|                         layer.attn_norm_b   = ml.create_tensor(ctx, tn(LLM_TENSOR_ATTN_NORM,   "bias",   i), {n_embd}, backend); | ||||
| @@ -2915,12 +2946,12 @@ static void llm_load_tensors( | ||||
|                             // norm is not performance relevant on its own but keeping it in VRAM reduces data copying | ||||
|                             // on Windows however this is detrimental unless everything is on the GPU | ||||
| #ifndef _WIN32 | ||||
|                             backend_norm = LLAMA_BACKEND_OFFLOAD; | ||||
|                             backend_norm = llama_backend_offload; | ||||
| #else | ||||
|                             backend_norm = n_gpu_layers <= (int) n_layer + 2 ? GGML_BACKEND_CPU : LLAMA_BACKEND_OFFLOAD; | ||||
|                             backend_norm = n_gpu_layers <= (int) n_layer + 2 ? GGML_BACKEND_CPU : llama_backend_offload; | ||||
| #endif // _WIN32 | ||||
|  | ||||
|                             backend_output = LLAMA_BACKEND_OFFLOAD_SPLIT; | ||||
|                             backend_output = llama_backend_offload_split; | ||||
|                         } else { | ||||
|                             backend_norm   = GGML_BACKEND_CPU; | ||||
|                             backend_output = GGML_BACKEND_CPU; | ||||
| @@ -2946,8 +2977,8 @@ static void llm_load_tensors( | ||||
|                     model.layers.resize(n_layer); | ||||
|  | ||||
|                     for (uint32_t i = 0; i < n_layer; ++i) { | ||||
|                         const ggml_backend_type backend       = int(i) < i_gpu_start ? GGML_BACKEND_CPU : LLAMA_BACKEND_OFFLOAD; // NOLINT | ||||
|                         const ggml_backend_type backend_split = int(i) < i_gpu_start ? GGML_BACKEND_CPU : LLAMA_BACKEND_OFFLOAD_SPLIT; // NOLINT | ||||
|                         const ggml_backend_type backend       = int(i) < i_gpu_start ? GGML_BACKEND_CPU : llama_backend_offload; // NOLINT | ||||
|                         const ggml_backend_type backend_split = int(i) < i_gpu_start ? GGML_BACKEND_CPU : llama_backend_offload_split; // NOLINT | ||||
|  | ||||
|                         auto & layer = model.layers[i]; | ||||
|  | ||||
| @@ -2993,12 +3024,12 @@ static void llm_load_tensors( | ||||
|                             // norm is not performance relevant on its own but keeping it in VRAM reduces data copying | ||||
|                             // on Windows however this is detrimental unless everything is on the GPU | ||||
| #ifndef _WIN32 | ||||
|                             backend_norm = LLAMA_BACKEND_OFFLOAD; | ||||
|                             backend_norm = llama_backend_offload; | ||||
| #else | ||||
|                             backend_norm = n_gpu_layers <= (int) n_layer + 2 ? GGML_BACKEND_CPU : LLAMA_BACKEND_OFFLOAD; | ||||
|                             backend_norm = n_gpu_layers <= (int) n_layer + 2 ? GGML_BACKEND_CPU : llama_backend_offload; | ||||
| #endif // _WIN32 | ||||
|  | ||||
|                             backend_output = LLAMA_BACKEND_OFFLOAD_SPLIT; | ||||
|                             backend_output = llama_backend_offload_split; | ||||
|                         } else { | ||||
|                             backend_norm   = GGML_BACKEND_CPU; | ||||
|                             backend_output = GGML_BACKEND_CPU; | ||||
| @@ -3022,8 +3053,8 @@ static void llm_load_tensors( | ||||
|                     model.layers.resize(n_layer); | ||||
|  | ||||
|                     for (uint32_t i = 0; i < n_layer; ++i) { | ||||
|                         const ggml_backend_type backend = int(i) < i_gpu_start ? GGML_BACKEND_CPU : LLAMA_BACKEND_OFFLOAD; // NOLINT | ||||
|                         const ggml_backend_type backend_split = int(i) < i_gpu_start ? GGML_BACKEND_CPU : LLAMA_BACKEND_OFFLOAD_SPLIT; // NOLINT | ||||
|                         const ggml_backend_type backend = int(i) < i_gpu_start ? GGML_BACKEND_CPU : llama_backend_offload; // NOLINT | ||||
|                         const ggml_backend_type backend_split = int(i) < i_gpu_start ? GGML_BACKEND_CPU : llama_backend_offload_split; // NOLINT | ||||
|  | ||||
|                         auto & layer = model.layers[i]; | ||||
|  | ||||
|   | ||||
		Reference in New Issue
	
	Block a user
	 Meng Zhang
					Meng Zhang