mirror of
				https://github.com/ggml-org/llama.cpp.git
				synced 2025-10-30 08:42:00 +00:00 
			
		
		
		
	imatrix : support 3d tensors with MUL_MAT
This commit is contained in:
		| @@ -4,6 +4,7 @@ | ||||
| #include "llama.h" | ||||
| #include "gguf.h" | ||||
|  | ||||
| #include <algorithm> | ||||
| #include <chrono> | ||||
| #include <cmath> | ||||
| #include <cstdio> | ||||
| @@ -15,7 +16,6 @@ | ||||
| #include <fstream> | ||||
| #include <unordered_map> | ||||
| #include <map> | ||||
| #include <algorithm> | ||||
|  | ||||
| #if defined(_MSC_VER) | ||||
| #pragma warning(disable: 4244 4267) // possible loss of data | ||||
| @@ -124,14 +124,21 @@ bool IMatrixCollector::collect_imatrix(struct ggml_tensor * t, bool ask, void * | ||||
|     const char * data = is_host ? (const char *) src1->data : m_src1_data.data(); | ||||
|     GGML_ASSERT(src1->nb[0] == ggml_element_size(src1)); | ||||
|  | ||||
|     // TODO: 4d? (is that even used in practice?) | ||||
|     // the extra dimension would need to be stored somewhere to be reflected in the imatrix file | ||||
|     if (ggml_nrows(src1) != src1->ne[1] * src1->ne[2]) { | ||||
|         LOG_ERR("%s: tensor has more than 3 dimensions: %s", __func__, wname.c_str()); | ||||
|         GGML_ASSERT(false); | ||||
|     } | ||||
|  | ||||
|     // this has been adapted to the new format of storing merged experts in a single 3d tensor | ||||
|     // ref: https://github.com/ggml-org/llama.cpp/pull/6387 | ||||
|     if (t->op == GGML_OP_MUL_MAT_ID) { | ||||
|         //   ids  -> [n_experts_used, n_tokens] | ||||
|         //   src1 -> [cols, n_expert_used, n_tokens] | ||||
|         const ggml_tensor * ids = t->src[2]; | ||||
|         const int n_as = src0->ne[2]; | ||||
|         const int n_ids = ids->ne[0]; | ||||
|         const int64_t n_as = src0->ne[2]; | ||||
|         const int64_t n_ids = ids->ne[0]; | ||||
|  | ||||
|         // the top-k selected expert ids are stored in the ids tensor | ||||
|         // for simplicity, always copy ids to host, because it is small | ||||
| @@ -153,7 +160,7 @@ bool IMatrixCollector::collect_imatrix(struct ggml_tensor * t, bool ask, void * | ||||
|             e.counts.resize(n_as, 0); | ||||
|         } | ||||
|         else if (e.values.size() != (size_t)src1->ne[0]*n_as) { | ||||
|             LOG_ERR("%s: inconsistent size for %s (%d vs %d)\n", __func__, wname.c_str(), (int)e.values.size(), (int)src1->ne[0]*n_as); | ||||
|             LOG_ERR("%s: inconsistent size for %s (%d vs %d)\n", __func__, wname.c_str(), (int)e.values.size(), (int)(src1->ne[0]*n_as)); | ||||
|             exit(1); //GGML_ABORT("fatal error"); | ||||
|         } | ||||
|         else if (e.counts.size() != (size_t)n_as) { | ||||
| @@ -162,11 +169,11 @@ bool IMatrixCollector::collect_imatrix(struct ggml_tensor * t, bool ask, void * | ||||
|         } | ||||
|         LOG_DBGV(2, "%s[%d]: %32s, %s, %5d x %5d, %d\n", __func__, m_last_chunk, wname.c_str(), ggml_op_name(t->op), (int)src1->ne[0], (int)src1->ne[2], (int)src1->type); | ||||
|         // loop over all possible experts, regardless if they are used or not in the batch | ||||
|         for (int ex = 0; ex < n_as; ++ex) { | ||||
|         for (int64_t ex = 0; ex < n_as; ++ex) { | ||||
|             size_t e_start = ex*src1->ne[0]; | ||||
|  | ||||
|             for (int idx = 0; idx < n_ids; ++idx) { | ||||
|                 for (int row = 0; row < (int)src1->ne[2]; ++row) { | ||||
|             for (int64_t idx = 0; idx < n_ids; ++idx) { | ||||
|                 for (int64_t row = 0; row < src1->ne[2]; ++row) { | ||||
|                     const int excur = *(const int32_t *) (m_ids.data() + row*ids->nb[1] + idx*ids->nb[0]); | ||||
|  | ||||
|                     GGML_ASSERT(excur >= 0 && excur < n_as); // sanity check | ||||
| @@ -179,7 +186,7 @@ bool IMatrixCollector::collect_imatrix(struct ggml_tensor * t, bool ask, void * | ||||
|  | ||||
|                     e.counts[ex]++; | ||||
|  | ||||
|                     for (int j = 0; j < (int)src1->ne[0]; ++j) { | ||||
|                     for (int64_t j = 0; j < src1->ne[0]; ++j) { | ||||
|                         e.values[e_start + j] += x[j] * x[j]; | ||||
|                         if (!std::isfinite((float)e.values[e_start + j])) { | ||||
|                             LOG_ERR("%f detected in %s\n", (float)e.values[e_start + j], wname.c_str()); | ||||
| @@ -202,40 +209,48 @@ bool IMatrixCollector::collect_imatrix(struct ggml_tensor * t, bool ask, void * | ||||
|         } | ||||
|     } else { | ||||
|         auto & e = m_stats[wname]; | ||||
|         const int64_t n_mat = src1->ne[2] * src1->ne[3]; | ||||
|  | ||||
|         if (e.values.empty()) { | ||||
|             e.values.resize(src1->ne[0], 0); | ||||
|             e.counts.resize(1, 0); | ||||
|             e.values.resize(src1->ne[0] * n_mat, 0); | ||||
|             e.counts.resize(n_mat, 0); | ||||
|         } | ||||
|         else if (e.values.size() != (size_t)src1->ne[0]) { | ||||
|             LOG_ERR("%s: inconsistent size for %s (%d vs %d)\n", __func__, wname.c_str(), (int)e.values.size(), (int)src1->ne[0]); | ||||
|         else if (e.values.size() != (size_t)(src1->ne[0] * n_mat)) { | ||||
|             LOG_ERR("%s: inconsistent size for %s (%d vs %d)\n", __func__, wname.c_str(), (int)e.values.size(), (int)(src1->ne[0] * n_mat)); | ||||
|             exit(1); //GGML_ABORT("fatal error"); | ||||
|         } | ||||
|         else if (e.counts.size() != 1) { | ||||
|             LOG_ERR("%s: inconsistent expert count for %s (%d vs %d)\n", __func__, wname.c_str(), (int)e.counts.size(), 1); | ||||
|         else if (e.counts.size() != (size_t)n_mat) { | ||||
|             LOG_ERR("%s: inconsistent expert count for %s (%d vs %d)\n", __func__, wname.c_str(), (int)e.counts.size(), (int)n_mat); | ||||
|             exit(1); //GGML_ABORT("fatal error"); | ||||
|         } | ||||
|         LOG_DBGV(2, "%s[%d]: %32s, %s, %5d x %5d, %d\n", __func__, m_last_chunk, wname.c_str(), ggml_op_name(t->op), (int)src1->ne[0], (int)src1->ne[1], (int)src1->type); | ||||
|         // TODO: higher dimensions | ||||
|         for (int row = 0; row < (int)src1->ne[1]; ++row) { | ||||
|             const float * x = (const float *) (data + row * src1->nb[1]); | ||||
|             e.counts[0]++; | ||||
|             for (int j = 0; j < (int)src1->ne[0]; ++j) { | ||||
|                 e.values[j] += x[j] * x[j]; | ||||
|                 if (!std::isfinite((float)e.values[j])) { | ||||
|                     LOG_ERR("%f detected in %s\n", (float)e.values[j], wname.c_str()); | ||||
|                     exit(1); | ||||
|         LOG_DBGV(2, "%s[%d]: %32s, %s, %5d x %5d x %5d, %d\n", __func__, m_last_chunk, wname.c_str(), ggml_op_name(t->op), (int)src1->ne[0], (int)src1->ne[1], (int)src1->ne[2], (int)src1->type); | ||||
|         for (int64_t i3 = 0; i3 < src1->ne[3]; ++i3) { | ||||
|             for (int64_t i2 = 0; i2 < src1->ne[2]; ++i2) { | ||||
|                 const int64_t mat_id = i3 * src1->ne[2] + i2; | ||||
|                 const int64_t mat_start = mat_id * src1->ne[0]; | ||||
|  | ||||
|                 for (int64_t row = 0; row < src1->ne[1]; ++row) { | ||||
|                     const float * x = (const float *) (data + row * src1->nb[1] + i2 * src1->nb[2] + i3 * src1->ne[3]); | ||||
|                     e.counts[mat_id]++; | ||||
|                     for (int64_t j = 0; j < src1->ne[0]; ++j) { | ||||
|                         e.values[mat_start + j] += x[j] * x[j]; | ||||
|                         if (!std::isfinite((float)e.values[j])) { | ||||
|                             LOG_ERR("%f detected in %s\n", (float)e.values[j], wname.c_str()); | ||||
|                             exit(1); | ||||
|                         } | ||||
|                     } | ||||
|                 } | ||||
|                 const int32_t n_chunk = e.counts[mat_id] / chunk_size; | ||||
|                 if (n_chunk > m_last_chunk) { | ||||
|                     const int32_t chunk_step = n_chunk - m_last_chunk; | ||||
|                     m_last_chunk = n_chunk; | ||||
|                     if ((m_last_chunk % m_params.n_out_freq) / chunk_step == 0) { | ||||
|                         save_imatrix(); | ||||
|                     } | ||||
|                     if (m_params.n_save_freq > 0 && (m_last_chunk % m_params.n_save_freq) / chunk_step == 0) { | ||||
|                         save_imatrix(m_last_chunk); | ||||
|                     } | ||||
|                 } | ||||
|             } | ||||
|         } | ||||
|         const int32_t n_chunk = e.counts[0] / chunk_size; | ||||
|         if (n_chunk > m_last_chunk) { | ||||
|             const int32_t chunk_step = n_chunk - m_last_chunk; | ||||
|             m_last_chunk = n_chunk; | ||||
|             if ((m_last_chunk % m_params.n_out_freq) / chunk_step == 0) { | ||||
|                 save_imatrix(); | ||||
|             } | ||||
|             if (m_params.n_save_freq > 0 && (m_last_chunk % m_params.n_save_freq) / chunk_step == 0) { | ||||
|                 save_imatrix(m_last_chunk); | ||||
|             } | ||||
|         } | ||||
|     } | ||||
|   | ||||
| @@ -196,7 +196,9 @@ static int load_legacy_imatrix(const std::string & imatrix_file, std::vector<std | ||||
|             exit(1); | ||||
|         } | ||||
|         if (ncall > 0) { | ||||
|             for (auto& v : e) v /= ncall; | ||||
|             for (auto & v : e) { | ||||
|                 v /= ncall; | ||||
|             } | ||||
|         } | ||||
|  | ||||
|         if (getenv("LLAMA_TRACE")) { | ||||
|   | ||||
		Reference in New Issue
	
	Block a user
	 Francis Couture-Harpin
					Francis Couture-Harpin