mirror of
				https://github.com/ggml-org/llama.cpp.git
				synced 2025-10-31 08:51:55 +00:00 
			
		
		
		
	gguf-py : Numpy dequantization for most types (#8939)
* gguf-py : Numpy dequantization for most types * gguf-py : Numpy dequantization for grid-based i-quants
This commit is contained in:
		
							
								
								
									
										237
									
								
								gguf-py/tests/test_quants.py
									
									
									
									
									
										Executable file
									
								
							
							
						
						
									
										237
									
								
								gguf-py/tests/test_quants.py
									
									
									
									
									
										Executable file
									
								
							| @@ -0,0 +1,237 @@ | ||||
| #!/usr/bin/env python3 | ||||
|  | ||||
| # Test gguf.quants so that it exactly matches the C implementation of the (de)quantization | ||||
|  | ||||
| # NOTE: this is kind of a mess, but at least it worked for initially testing the Python implementations. | ||||
|  | ||||
| from __future__ import annotations | ||||
|  | ||||
| import argparse | ||||
| from math import prod | ||||
| import os | ||||
| import sys | ||||
| from pathlib import Path | ||||
| import ctypes | ||||
| import logging | ||||
| import numpy as np | ||||
|  | ||||
| # Necessary to load the local gguf package | ||||
| if "NO_LOCAL_GGUF" not in os.environ and (Path(__file__).parent.parent.parent / 'gguf-py').exists(): | ||||
|     sys.path.insert(0, str(Path(__file__).parent.parent)) | ||||
|  | ||||
| import gguf | ||||
| from gguf.constants import GGMLQuantizationType | ||||
|  | ||||
|  | ||||
| logger = logging.getLogger("test-quants") | ||||
|  | ||||
|  | ||||
| c_float_p = ctypes.POINTER(ctypes.c_float) | ||||
|  | ||||
|  | ||||
| class ggml_init_params(ctypes.Structure): | ||||
|     _fields_ = [ | ||||
|         ("mem_size", ctypes.c_size_t), | ||||
|         ("mem_buffer", ctypes.c_void_p), | ||||
|         ("no_alloc", ctypes.c_bool), | ||||
|     ] | ||||
|  | ||||
|  | ||||
| class GGMLQuants: | ||||
|     libggml: ctypes.CDLL | ||||
|  | ||||
|     def __init__(self, libggml: Path): | ||||
|         self.libggml = ctypes.CDLL(str(libggml)) | ||||
|         self.libggml.ggml_quantize_chunk.restype = ctypes.c_size_t | ||||
|         # enum ggml_type   type, | ||||
|         #    const float * src, | ||||
|         #           void * dst, | ||||
|         #        int64_t   start, | ||||
|         #        int64_t   nrows, | ||||
|         #        int64_t   n_per_row, | ||||
|         #    const float * imatrix) { | ||||
|         self.libggml.ggml_quantize_chunk.argtypes = ( | ||||
|             ctypes.c_int, | ||||
|             ctypes.POINTER(ctypes.c_float), | ||||
|             ctypes.c_void_p, | ||||
|             ctypes.c_int64, | ||||
|             ctypes.c_int64, | ||||
|             ctypes.c_int64, | ||||
|             ctypes.POINTER(ctypes.c_float), | ||||
|         ) | ||||
|  | ||||
|         self.libggml.ggml_quantize_requires_imatrix.restype = ctypes.c_bool | ||||
|         self.libggml.ggml_quantize_requires_imatrix.argtypes = (ctypes.c_int,) | ||||
|  | ||||
|         for t in ( | ||||
|             "q4_0", "q4_1", "q5_0", "q5_1", "q8_0", | ||||
|             "q2_K", "q3_K", "q4_K", "q5_K", "q6_K", | ||||
|             "iq2_xxs", "iq2_xs", "iq2_s", "iq3_xxs", "iq3_s", "iq1_s", "iq1_m", | ||||
|             "iq4_nl", "iq4_xs", | ||||
|         ): | ||||
|             dequant_func: ctypes._NamedFuncPointer = getattr(self.libggml, "dequantize_row_" + t) | ||||
|             dequant_func.restype = None | ||||
|             dequant_func.argtypes = (ctypes.c_void_p, ctypes.POINTER(ctypes.c_float), ctypes.c_int64) | ||||
|  | ||||
|         self.libggml.ggml_fp16_to_fp32_row.restype = None | ||||
|         self.libggml.ggml_fp16_to_fp32_row.argtypes = (ctypes.POINTER(ctypes.c_uint16), ctypes.POINTER(ctypes.c_float), ctypes.c_int64) | ||||
|         self.libggml.ggml_bf16_to_fp32_row.restype = None | ||||
|         self.libggml.ggml_bf16_to_fp32_row.argtypes = (ctypes.POINTER(ctypes.c_uint16), ctypes.POINTER(ctypes.c_float), ctypes.c_int64) | ||||
|  | ||||
|         self.libggml.ggml_init.argtypes = (ggml_init_params,) | ||||
|  | ||||
|         self.libggml.ggml_init(ggml_init_params(1 * 1024 * 1024, 0, False)) | ||||
|  | ||||
|     def dequantize(self, tensor: np.ndarray, qtype: GGMLQuantizationType) -> np.ndarray: | ||||
|         result = np.zeros(gguf.quant_shape_from_byte_shape(tensor.shape, qtype), dtype=np.float32, order="C") | ||||
|         if qtype == GGMLQuantizationType.F32: | ||||
|             # no-op | ||||
|             result = tensor.view(np.float32) | ||||
|         elif qtype == GGMLQuantizationType.F16: | ||||
|             self.libggml.ggml_fp16_to_fp32_row(tensor.ctypes.data_as(ctypes.POINTER(ctypes.c_uint16)), result.ctypes.data_as(c_float_p), result.size) | ||||
|         elif qtype == GGMLQuantizationType.BF16: | ||||
|             self.libggml.ggml_bf16_to_fp32_row(tensor.ctypes.data_as(ctypes.POINTER(ctypes.c_uint16)), result.ctypes.data_as(c_float_p), result.size) | ||||
|         else: | ||||
|             lw_qname = qtype.name.lower() | ||||
|             if lw_qname[-1] == "k": | ||||
|                 lw_qname = lw_qname[:-1] + "K" | ||||
|             dequant_func: ctypes._NamedFuncPointer = getattr(self.libggml, "dequantize_row_" + lw_qname) | ||||
|             dequant_func(tensor.ctypes.data_as(ctypes.c_void_p), result.ctypes.data_as(c_float_p), result.size) | ||||
|         return result | ||||
|  | ||||
|     def quantize(self, data: np.ndarray, qtype: GGMLQuantizationType) -> np.ndarray: | ||||
|         result = np.zeros(gguf.quant_shape_to_byte_shape(data.shape, qtype), dtype=np.uint8, order="C") | ||||
|         if self.libggml.ggml_quantize_requires_imatrix(qtype.value): | ||||
|             # TODO: is a column-wise sum of squares appropriate? | ||||
|             qw = np.sum((data * data).reshape((-1, data.shape[-1])), axis=0).ctypes.data_as(c_float_p) | ||||
|         else: | ||||
|             qw = ctypes.cast(0, c_float_p) | ||||
|         result_size = self.libggml.ggml_quantize_chunk(qtype.value, data.ctypes.data_as(c_float_p), result.ctypes.data_as(ctypes.c_void_p), 0, prod(data.shape[:-1]), data.shape[-1], qw) | ||||
|         assert result.size == result_size | ||||
|         return result | ||||
|  | ||||
|  | ||||
| def compare_tensors(t1: np.ndarray, t2: np.ndarray, qtype: GGMLQuantizationType) -> bool: | ||||
|     same = np.array_equal(t1, t2) | ||||
|     if same: | ||||
|         return True | ||||
|     else: | ||||
|         block_size, type_size = gguf.GGML_QUANT_SIZES[qtype] | ||||
|         if t1.dtype == np.float32: | ||||
|             t1 = t1.reshape((-1, block_size)) | ||||
|             t2 = t2.reshape((-1, block_size)) | ||||
|         else: | ||||
|             t1 = t1.reshape((-1, type_size)) | ||||
|             t2 = t2.reshape((-1, type_size)) | ||||
|         x = t1.view(np.uint8) ^ t2.view(np.uint8) | ||||
|         diff_bits = np.count_nonzero(np.unpackbits(x, axis=-1), axis=-1) | ||||
|         num_bad_blocks = np.count_nonzero(diff_bits, axis=0) | ||||
|         if num_bad_blocks == 0 and t1.shape == t2.shape: | ||||
|             logger.debug("Bits are equal, but arrays don't match, likely contains NANs") | ||||
|             return True | ||||
|         logger.debug(f"{num_bad_blocks} bad blocks ({100 * num_bad_blocks / x.shape[0]:.6f}%)") | ||||
|         bad_block_id = np.argmax(diff_bits, axis=0) | ||||
|         logger.debug(f"Worst block id: {bad_block_id}") | ||||
|         logger.debug(f"Sample bad block ({diff_bits[bad_block_id]} differing bits):\n{t1[bad_block_id]}\nReference:\n{t2[bad_block_id]}") | ||||
|  | ||||
|         sum_diff_bits = np.sum(diff_bits) | ||||
|         logger.debug(f"{sum_diff_bits} bits differ ({100 * sum_diff_bits/(x.size * 8):.6f}%)") | ||||
|         return False | ||||
|  | ||||
|  | ||||
| def do_test(libggml_path: Path, quick: bool = False): | ||||
|     ggml_quants = GGMLQuants(libggml_path) | ||||
|  | ||||
|     np.set_printoptions(precision=None, threshold=(4 * 256) + 1, formatter={"int": lambda n: "0x%02X" % n}) | ||||
|  | ||||
|     r = np.random.randn(8, 1024, 1024).astype(np.float32, copy=False) | ||||
|  | ||||
|     for qtype in (GGMLQuantizationType.F16, *gguf.quants._type_traits.keys()): | ||||
|         has_dequantize = False | ||||
|         has_quantize = False | ||||
|  | ||||
|         try: | ||||
|             gguf.dequantize(np.zeros((gguf.GGML_QUANT_SIZES[qtype][1]), dtype=np.uint8), qtype) | ||||
|             has_dequantize = True | ||||
|         except (NotImplementedError, AssertionError) as e: | ||||
|             if isinstance(e, AssertionError): | ||||
|                 logger.error(f"Error with {qtype.name}: {e}") | ||||
|                 raise e | ||||
|         try: | ||||
|             gguf.quantize(np.zeros((gguf.GGML_QUANT_SIZES[qtype][0]), dtype=np.float32), qtype) | ||||
|             has_quantize = True | ||||
|         except (NotImplementedError, AssertionError) as e: | ||||
|             if isinstance(e, AssertionError): | ||||
|                 logger.error(f"Error with {qtype.name}: {e}") | ||||
|                 raise e | ||||
|  | ||||
|         if not has_dequantize and not has_quantize: | ||||
|             continue | ||||
|  | ||||
|         logger.info(f"Testing {qtype.name}") | ||||
|  | ||||
|         rc = r.copy(order="C") | ||||
|  | ||||
|         pyq = None | ||||
|         ggq = None | ||||
|  | ||||
|         if has_quantize: | ||||
|             logger.debug(f"Quantizing to {qtype.name} with Python") | ||||
|             pyq = gguf.quants.quantize(rc, qtype) | ||||
|  | ||||
|             logger.debug(f"Quantizing to {qtype.name} with C") | ||||
|             ggq = ggml_quants.quantize(rc, qtype) | ||||
|  | ||||
|             if qtype == GGMLQuantizationType.F16: | ||||
|                 pyq = pyq.view(np.uint8) | ||||
|             quant_equal = compare_tensors(pyq, ggq, qtype) | ||||
|  | ||||
|             if not quant_equal: | ||||
|                 logger.error(f"Quantization to {qtype.name} does not match ❌") | ||||
|             else: | ||||
|                 logger.info(f"Quantization to {qtype.name} matches exactly ✅") | ||||
|  | ||||
|         if has_dequantize: | ||||
|             if ggq is None and not quick: | ||||
|                 logger.debug(f"Quantizing to {qtype.name} with C") | ||||
|                 ggq = ggml_quants.quantize(rc, qtype) | ||||
|  | ||||
|             if ggq is not None: | ||||
|                 logger.debug(f"Dequantizing from {qtype.name} with Python") | ||||
|                 pydq = gguf.quants.dequantize(ggq, qtype) | ||||
|                 logger.debug(f"Dequantizing from {qtype.name} with C") | ||||
|                 ggdq = ggml_quants.dequantize(ggq, qtype) | ||||
|  | ||||
|                 dequant_equal = compare_tensors(pydq, ggdq, qtype) | ||||
|  | ||||
|                 if not dequant_equal: | ||||
|                     logger.error(f"Dequantization from {qtype.name} does not match ❌") | ||||
|                 else: | ||||
|                     logger.info(f"Dequantization from {qtype.name} matches exactly ✅") | ||||
|  | ||||
|             rq_shape = gguf.quants.quant_shape_to_byte_shape((8, 1024, 1024 // 2), qtype) | ||||
|             rq = np.random.random(rq_shape).astype(np.float16).view(np.uint8) | ||||
|  | ||||
|             logger.debug(f"Dequantizing random f16 data as {qtype.name} with Python") | ||||
|             pydq = gguf.quants.dequantize(rq, qtype) | ||||
|             logger.debug(f"Dequantizing random f16 data as {qtype.name} with C") | ||||
|             ggdq = ggml_quants.dequantize(rq, qtype) | ||||
|  | ||||
|             dequant_equal = compare_tensors(pydq, ggdq, qtype) | ||||
|  | ||||
|             if not dequant_equal: | ||||
|                 logger.error(f"Dequantization from random f16 data as {qtype.name} does not match ❌") | ||||
|             else: | ||||
|                 logger.info(f"Dequantization from random f16 data as {qtype.name} matches exactly ✅") | ||||
|  | ||||
|  | ||||
| if __name__ == "__main__": | ||||
|     parser = argparse.ArgumentParser(description="Test Python (de)quantization against the reference C implementation") | ||||
|     parser.add_argument("--libggml", type=Path, default=Path(__file__).parent.parent.parent / "build" / "ggml" / "src" / "libggml.so", help="The path to libggml.so") | ||||
|     parser.add_argument("--quick", action="store_true", help="Don't quantize with C when it's not strictly necessary") | ||||
|  | ||||
|     args = parser.parse_args() | ||||
|  | ||||
|     logging.basicConfig(level=logging.DEBUG) | ||||
|  | ||||
|     do_test(args.libggml, args.quick) | ||||
		Reference in New Issue
	
	Block a user
	 compilade
					compilade