mirror of
				https://github.com/ggml-org/llama.cpp.git
				synced 2025-10-30 08:42:00 +00:00 
			
		
		
		
	model-conversion : remove hardcoded /bin/bash shebangs [no ci] (#15765)
* model-conversion : remove hardcoded /bin/bash shebangs [no ci] This commit updates the bash scripts to use env instead of using hardcoded /bin/bash in the shebang line. The motivation for this is that some systems may have bash installed in a different location, and using /usr/bin/env bash ensures that the script will use the first bash interpreter found in the user's PATH, making the scripts more portable across different environments. * model-conversion : rename script to .py [no ci] This commit renames run-casual-gen-embeddings-org.sh to run-casual-gen-embeddings-org.py to reflect its Python nature.
This commit is contained in:
		
							
								
								
									
										113
									
								
								examples/model-conversion/scripts/causal/run-casual-gen-embeddings-org.py
									
									
									
									
									
										Executable file
									
								
							
							
						
						
									
										113
									
								
								examples/model-conversion/scripts/causal/run-casual-gen-embeddings-org.py
									
									
									
									
									
										Executable file
									
								
							| @@ -0,0 +1,113 @@ | ||||
| #!/usr/bin/env python3 | ||||
|  | ||||
| import argparse | ||||
| import os | ||||
| import importlib | ||||
| import sys | ||||
| import torch | ||||
| import numpy as np | ||||
|  | ||||
| from transformers import AutoTokenizer, AutoConfig, AutoModel, AutoModelForCausalLM | ||||
| from pathlib import Path | ||||
|  | ||||
| unreleased_model_name = os.getenv('UNRELEASED_MODEL_NAME') | ||||
|  | ||||
| parser = argparse.ArgumentParser(description='Process model with specified path') | ||||
| parser.add_argument('--model-path', '-m', help='Path to the model') | ||||
| args = parser.parse_args() | ||||
|  | ||||
| model_path = os.environ.get('MODEL_PATH', args.model_path) | ||||
| if model_path is None: | ||||
|     parser.error("Model path must be specified either via --model-path argument or MODEL_PATH environment variable") | ||||
|  | ||||
| config = AutoConfig.from_pretrained(model_path) | ||||
|  | ||||
| print("Model type:       ", config.model_type) | ||||
| print("Vocab size:       ", config.vocab_size) | ||||
| print("Hidden size:      ", config.hidden_size) | ||||
| print("Number of layers: ", config.num_hidden_layers) | ||||
| print("BOS token id:     ", config.bos_token_id) | ||||
| print("EOS token id:     ", config.eos_token_id) | ||||
|  | ||||
| print("Loading model and tokenizer using AutoTokenizer:", model_path) | ||||
| tokenizer = AutoTokenizer.from_pretrained(model_path) | ||||
|  | ||||
| if unreleased_model_name: | ||||
|     model_name_lower = unreleased_model_name.lower() | ||||
|     unreleased_module_path = f"transformers.models.{model_name_lower}.modular_{model_name_lower}" | ||||
|     class_name = f"{unreleased_model_name}ForCausalLM" | ||||
|     print(f"Importing unreleased model module: {unreleased_module_path}") | ||||
|  | ||||
|     try: | ||||
|         model_class = getattr(importlib.import_module(unreleased_module_path), class_name) | ||||
|         model = model_class.from_pretrained(model_path) | ||||
|     except (ImportError, AttributeError) as e: | ||||
|         print(f"Failed to import or load model: {e}") | ||||
| else: | ||||
|     model = AutoModelForCausalLM.from_pretrained(model_path) | ||||
| print(f"Model class: {type(model)}") | ||||
| #print(f"Model file: {type(model).__module__}") | ||||
|  | ||||
| model_name = os.path.basename(model_path) | ||||
| print(f"Model name: {model_name}") | ||||
|  | ||||
| prompt = "Hello world today" | ||||
| input_ids = tokenizer(prompt, return_tensors="pt").input_ids | ||||
| print(f"Input tokens: {input_ids}") | ||||
| print(f"Input text: {repr(prompt)}") | ||||
| print(f"Tokenized: {tokenizer.convert_ids_to_tokens(input_ids[0])}") | ||||
|  | ||||
| with torch.no_grad(): | ||||
|     outputs = model(input_ids, output_hidden_states=True) | ||||
|  | ||||
|     # Extract hidden states from the last layer | ||||
|     # outputs.hidden_states is a tuple of (num_layers + 1) tensors | ||||
|     # Index -1 gets the last layer, shape: [batch_size, seq_len, hidden_size] | ||||
|     last_hidden_states = outputs.hidden_states[-1] | ||||
|  | ||||
|     # Get embeddings for all tokens | ||||
|     token_embeddings = last_hidden_states[0].cpu().numpy()  # Remove batch dimension | ||||
|  | ||||
|     print(f"Hidden states shape: {last_hidden_states.shape}") | ||||
|     print(f"Token embeddings shape: {token_embeddings.shape}") | ||||
|     print(f"Hidden dimension: {token_embeddings.shape[-1]}") | ||||
|     print(f"Number of tokens: {token_embeddings.shape[0]}") | ||||
|  | ||||
|     # Save raw token embeddings | ||||
|     data_dir = Path("data") | ||||
|     data_dir.mkdir(exist_ok=True) | ||||
|     bin_filename = data_dir / f"pytorch-{model_name}-embeddings.bin" | ||||
|     txt_filename = data_dir / f"pytorch-{model_name}-embeddings.txt" | ||||
|  | ||||
|     # Save all token embeddings as binary | ||||
|     print(token_embeddings) | ||||
|     token_embeddings.astype(np.float32).tofile(bin_filename) | ||||
|  | ||||
|     # Save as text for inspection | ||||
|     with open(txt_filename, "w") as f: | ||||
|         for i, embedding in enumerate(token_embeddings): | ||||
|             for j, val in enumerate(embedding): | ||||
|                 f.write(f"{i} {j} {val:.6f}\n") | ||||
|  | ||||
|     # Print embeddings per token in the requested format | ||||
|     print("\nToken embeddings:") | ||||
|     tokens = tokenizer.convert_ids_to_tokens(input_ids[0]) | ||||
|     for i, embedding in enumerate(token_embeddings): | ||||
|         # Format: show first few values, ..., then last few values | ||||
|         if len(embedding) > 10: | ||||
|             # Show first 3 and last 3 values with ... in between | ||||
|             first_vals = " ".join(f"{val:8.6f}" for val in embedding[:3]) | ||||
|             last_vals = " ".join(f"{val:8.6f}" for val in embedding[-3:]) | ||||
|             print(f"embedding {i}: {first_vals}  ... {last_vals}") | ||||
|         else: | ||||
|             # If embedding is short, show all values | ||||
|             vals = " ".join(f"{val:8.6f}" for val in embedding) | ||||
|             print(f"embedding {i}: {vals}") | ||||
|  | ||||
|     # Also show token info for reference | ||||
|     print(f"\nToken reference:") | ||||
|     for i, token in enumerate(tokens): | ||||
|         print(f"  Token {i}: {repr(token)}") | ||||
|  | ||||
|     print(f"Saved bin logits to: {bin_filename}") | ||||
|     print(f"Saved txt logist to: {txt_filename}") | ||||
		Reference in New Issue
	
	Block a user
	 Daniel Bevenius
					Daniel Bevenius