opencl: optimize mxfp4 kernels (#16037)

- flatten mxfp4 and packed fp4->fp16 bit-wise convert function (replace lut)
- MoE kernel optimizations

---------

Co-authored-by: Li He <lih@qti.qualcomm.com>
This commit is contained in:
Shawn Gu
2025-09-18 12:03:34 -07:00
committed by GitHub
parent c0b45097c3
commit 3edd87cd05
5 changed files with 701 additions and 2 deletions

View File

@@ -83,8 +83,10 @@ set(GGML_OPENCL_KERNELS
mul_mv_q4_0_f32_1d_16x_flat
mul_mv_q6_k
mul_mv_mxfp4_f32
mul_mv_mxfp4_f32_flat
mul_mv_id_q4_0_f32_8x_flat
mul_mv_id_mxfp4_f32
mul_mv_id_mxfp4_f32_flat
mul_mm_f32_f32_l4_lm
mul_mm_f16_f32_l4_lm
mul

View File

@@ -368,6 +368,7 @@ struct ggml_backend_opencl_context {
cl_program program_mul_mv_q4_0_f32_1d_16x_flat;
cl_program program_mul_mv_q6_K;
cl_program program_mul_mv_mxfp4_f32;
cl_program program_mul_mv_mxfp4_f32_flat;
cl_program program_mul_mv_f16_f16;
cl_program program_mul_mv_f16_f32_1row;
cl_program program_mul_mv_f16_f32_l4;
@@ -402,6 +403,7 @@ struct ggml_backend_opencl_context {
cl_program program_tsembd;
cl_program program_mul_mv_id_q4_0_f32_8x_flat;
cl_program program_mul_mv_id_mxfp4_f32;
cl_program program_mul_mv_id_mxfp4_f32_flat;
cl_program program_mul_mm_f32_f32_l4_lm;
cl_program program_mul_mm_f16_f32_l4_lm;
@@ -447,11 +449,12 @@ struct ggml_backend_opencl_context {
cl_kernel kernel_mul_mat_f16_f32_tiled;
cl_kernel kernel_mul_mat_q4_0_f32, kernel_mul_mat_q4_0_f32_v;
cl_kernel kernel_convert_block_q4_0, kernel_restore_block_q4_0;
cl_kernel kernel_convert_block_mxfp4, kernel_restore_block_mxfp4;
cl_kernel kernel_mul_mat_q4_0_f32_8x_flat;
cl_kernel kernel_convert_block_q4_0_noshuffle;
cl_kernel kernel_mul_mat_q4_0_f32_1d_8x_flat, kernel_mul_mat_q4_0_f32_1d_16x_flat;
cl_kernel kernel_mul_mv_q6_K_f32;
cl_kernel kernel_mul_mv_mxfp4_f32;
cl_kernel kernel_mul_mv_mxfp4_f32, kernel_mul_mv_mxfp4_f32_flat;
cl_kernel kernel_im2col_f32, kernel_im2col_f16;
cl_kernel kernel_argsort_f32_i32;
cl_kernel kernel_sum_rows_f32;
@@ -469,6 +472,7 @@ struct ggml_backend_opencl_context {
cl_kernel kernel_timestep_embedding;
cl_kernel kernel_mul_mv_id_q4_0_f32_8x_flat;
cl_kernel kernel_mul_mv_id_mxfp4_f32;
cl_kernel kernel_mul_mv_id_mxfp4_f32_flat;
cl_kernel kernel_mul_mm_f32_f32_l4_lm;
cl_kernel kernel_mul_mm_f16_f32_l4_lm;
@@ -765,6 +769,8 @@ static void load_cl_kernels(ggml_backend_opencl_context *backend_ctx, ggml_cl_ve
CL_CHECK((backend_ctx->kernel_convert_block_q4_0_noshuffle = clCreateKernel(backend_ctx->program_cvt, "kernel_convert_block_q4_0_noshuffle", &err), err));
CL_CHECK((backend_ctx->kernel_convert_block_q4_0 = clCreateKernel(backend_ctx->program_cvt, "kernel_convert_block_q4_0", &err), err));
CL_CHECK((backend_ctx->kernel_restore_block_q4_0 = clCreateKernel(backend_ctx->program_cvt, "kernel_restore_block_q4_0", &err), err));
CL_CHECK((backend_ctx->kernel_convert_block_mxfp4 = clCreateKernel(backend_ctx->program_cvt, "kernel_convert_block_mxfp4", &err), err));
CL_CHECK((backend_ctx->kernel_restore_block_mxfp4 = clCreateKernel(backend_ctx->program_cvt, "kernel_restore_block_mxfp4", &err), err));
GGML_LOG_CONT(".");
}
@@ -1002,6 +1008,22 @@ static void load_cl_kernels(ggml_backend_opencl_context *backend_ctx, ggml_cl_ve
GGML_LOG_CONT(".");
}
// mul_mv_mxfp4_f32_flat
{
#ifdef GGML_OPENCL_EMBED_KERNELS
const std::string kernel_src {
#include "mul_mv_mxfp4_f32_flat.cl.h"
};
#else
const std::string kernel_src = read_file("mul_mv_mxfp4_f32_flat.cl");
#endif
backend_ctx->program_mul_mv_mxfp4_f32_flat =
build_program_from_source(backend_ctx->context, backend_ctx->device, kernel_src.c_str(), compile_opts);
CL_CHECK((backend_ctx->kernel_mul_mv_mxfp4_f32_flat = clCreateKernel(backend_ctx->program_mul_mv_mxfp4_f32_flat, "kernel_mul_mv_mxfp4_f32_flat", &err), err));
GGML_LOG_CONT(".");
}
// mul_mv_f16_f16
{
#ifdef GGML_OPENCL_EMBED_KERNELS
@@ -1727,6 +1749,22 @@ static void load_cl_kernels(ggml_backend_opencl_context *backend_ctx, ggml_cl_ve
GGML_LOG_CONT(".");
}
// mul_mv_id_mxfp4_f32_flat
{
#ifdef GGML_OPENCL_EMBED_KERNELS
const std::string kernel_src {
#include "mul_mv_id_mxfp4_f32_flat.cl.h"
};
#else
const std::string kernel_src = read_file("mul_mv_id_mxfp4_f32_flat.cl");
#endif
backend_ctx->program_mul_mv_id_mxfp4_f32_flat =
build_program_from_source(backend_ctx->context, backend_ctx->device, kernel_src.c_str(), compile_opts);
CL_CHECK((backend_ctx->kernel_mul_mv_id_mxfp4_f32_flat = clCreateKernel(backend_ctx->program_mul_mv_id_mxfp4_f32_flat, "kernel_mul_mv_id_mxfp4_f32_flat", &err), err));
GGML_LOG_CONT(".");
}
// Adreno kernels
#ifdef GGML_OPENCL_USE_ADRENO_KERNELS
// transpose
@@ -2391,6 +2429,51 @@ struct ggml_tensor_extra_cl_q4_0 {
}
};
struct ggml_tensor_extra_cl_mxfp4 {
// Quantized values.
cl_mem q = nullptr;
// Quantized values in image1d_buffer_t.
cl_mem q_img = nullptr;
// Scales in E8M0.
cl_mem e = nullptr;
// Scales in image1d_buffer_t.
cl_mem e_img = nullptr;
// Size of quantized values.
size_t size_q = 0;
// Size of scales.
size_t size_e = 0;
~ggml_tensor_extra_cl_mxfp4() {
reset();
}
void reset() {
// q and d are subbuffers into the bigger buffer allocated in ggml_backend_buffer.
// They must be properly released so that the original buffer can be
// properly released to avoid memory leak.
if (q != nullptr) {
CL_CHECK(clReleaseMemObject(q));
q = nullptr;
}
if (e != nullptr) {
CL_CHECK(clReleaseMemObject(e));
e = nullptr;
}
if (q != nullptr) {
CL_CHECK(clReleaseMemObject(q_img));
q = nullptr;
}
// Currently, q_img and d_img are only initialized when SMALL_ALLOC is
// enabled. They point to the images in ggml_backend_opencl_buffer_context.
// So, there is no need to release them here.
// TODO: initialize them for non SMALL_PATH path, or remove them.
q_img = nullptr;
e_img = nullptr;
size_q = 0;
size_e = 0;
}
};
//------------------------------------------------------------------------------
// Backend API
//------------------------------------------------------------------------------
@@ -2894,6 +2977,12 @@ struct ggml_backend_opencl_buffer_context {
for (ggml_tensor_extra_cl_q4_0 * e : temp_tensor_extras_q4_0_in_use) {
delete e;
}
for (ggml_tensor_extra_cl_mxfp4 * e : temp_tensor_extras_mxfp4) {
delete e;
}
for (ggml_tensor_extra_cl_mxfp4 * e : temp_tensor_extras_mxfp4_in_use) {
delete e;
}
}
ggml_tensor_extra_cl * ggml_opencl_alloc_temp_tensor_extra() {
@@ -2926,6 +3015,21 @@ struct ggml_backend_opencl_buffer_context {
return extra;
}
ggml_tensor_extra_cl_mxfp4 * ggml_opencl_alloc_temp_tensor_extra_mxfp4() {
ggml_tensor_extra_cl_mxfp4 * extra;
if (temp_tensor_extras_mxfp4.empty()) {
extra = new ggml_tensor_extra_cl_mxfp4();
} else {
extra = temp_tensor_extras_mxfp4.back();
temp_tensor_extras_mxfp4.pop_back();
}
temp_tensor_extras_mxfp4_in_use.push_back(extra);
extra->reset();
return extra;
}
void reset() {
for (ggml_tensor_extra_cl * e : temp_tensor_extras_in_use) {
temp_tensor_extras.push_back(e);
@@ -2936,6 +3040,11 @@ struct ggml_backend_opencl_buffer_context {
temp_tensor_extras_q4_0.push_back(e);
}
temp_tensor_extras_q4_0_in_use.clear();
for (ggml_tensor_extra_cl_mxfp4 * e : temp_tensor_extras_mxfp4_in_use) {
temp_tensor_extras_mxfp4.push_back(e);
}
temp_tensor_extras_mxfp4_in_use.clear();
}
// Pools for extras. Available extras are in `temp_tensor_extras`. Extras
@@ -2947,6 +3056,8 @@ struct ggml_backend_opencl_buffer_context {
std::vector<ggml_tensor_extra_cl *> temp_tensor_extras_in_use;
std::vector<ggml_tensor_extra_cl_q4_0 *> temp_tensor_extras_q4_0;
std::vector<ggml_tensor_extra_cl_q4_0 *> temp_tensor_extras_q4_0_in_use;
std::vector<ggml_tensor_extra_cl_mxfp4 *> temp_tensor_extras_mxfp4;
std::vector<ggml_tensor_extra_cl_mxfp4 *> temp_tensor_extras_mxfp4_in_use;
// The buffer_context is initially created by ggml_backend_buft_alloc_buffer
// before any tensor is initialized (at the beginning of alloc_tensor_range).
@@ -3289,6 +3400,76 @@ static void ggml_backend_opencl_buffer_set_tensor(ggml_backend_buffer_t buffer,
}
#endif // GGML_OPENCL_USE_ADRENO_KERNELS
return;
}
if (tensor->type == GGML_TYPE_MXFP4) {
ggml_tensor_extra_cl * extra_orig = (ggml_tensor_extra_cl *)tensor->extra;
GGML_ASSERT(extra_orig && "Tesnors in OpenCL backend should have been allocated and initialized");
// Allocate the new extra and create aliases from the original.
ggml_backend_opencl_buffer_context * ctx = (ggml_backend_opencl_buffer_context *) buffer->context;
ggml_tensor_extra_cl_mxfp4 * extra = ctx->ggml_opencl_alloc_temp_tensor_extra_mxfp4();
size_t size_e = ggml_nelements(tensor)/ggml_blck_size(tensor->type)*sizeof(char);
size_t size_q = ggml_nelements(tensor)/ggml_blck_size(tensor->type)*ggml_blck_size(tensor->type)/2;
GGML_ASSERT(size_e + size_q == ggml_nbytes(tensor) && "Incorrect tensor size");
cl_int err;
cl_mem data_device = clCreateBuffer(context, CL_MEM_READ_WRITE,
ggml_nbytes(tensor), NULL, &err);
CL_CHECK(err);
CL_CHECK(clEnqueueWriteBuffer(
queue, data_device, CL_TRUE, 0,
ggml_nbytes(tensor), data, 0, NULL, NULL));
// The original tensor memory is divided into scales and quants, i.e.,
// we first store scales, then quants.
cl_buffer_region region;
// Create subbuffer for scales.
region.origin = align_to(extra_orig->offset + tensor->view_offs + offset, backend_ctx->alignment);
region.size = size_e;
extra->e = clCreateSubBuffer(
extra_orig->data_device, CL_MEM_READ_WRITE,
CL_BUFFER_CREATE_TYPE_REGION, &region, &err);
CL_CHECK(err);
auto previous_origin = region.origin;
// Create subbuffer for quants.
region.origin = align_to(previous_origin + size_e, backend_ctx->alignment);
region.size = size_q;
extra->q = clCreateSubBuffer(
extra_orig->data_device, CL_MEM_READ_WRITE,
CL_BUFFER_CREATE_TYPE_REGION, &region, &err);
CL_CHECK(err);
cl_kernel kernel = backend_ctx->kernel_convert_block_mxfp4;
CL_CHECK(clSetKernelArg(kernel, 0, sizeof(cl_mem), &data_device));
CL_CHECK(clSetKernelArg(kernel, 1, sizeof(cl_mem), &extra->q));
CL_CHECK(clSetKernelArg(kernel, 2, sizeof(cl_mem), &extra->e));
size_t global_work_size[] = {(size_t)ggml_nelements(tensor)/ggml_blck_size(tensor->type), 1, 1};
size_t local_work_size[] = {64, 1, 1};
cl_event evt;
CL_CHECK(clEnqueueNDRangeKernel(queue, kernel, 3, NULL, global_work_size, local_work_size, 0, NULL, &evt));
CL_CHECK(clWaitForEvents(1, &evt));
CL_CHECK(clReleaseMemObject(data_device));
// Create image for Q
cl_image_format img_format_q = {CL_RG, CL_UNSIGNED_INT32};
cl_image_desc img_desc_q = {
CL_MEM_OBJECT_IMAGE1D_BUFFER,
static_cast<size_t>(ggml_nelements(tensor)/32*2),
0, 0, 0, 0, 0, 0, 0,
{ extra->q }
};
extra->q_img = clCreateImage(context, CL_MEM_READ_ONLY, &img_format_q, &img_desc_q, NULL, &err);
tensor->extra = extra;
return;
}
#endif // GGML_OPENCL_SOA_Q
@@ -3337,6 +3518,31 @@ static void ggml_backend_opencl_buffer_get_tensor(ggml_backend_buffer_t buffer,
size_t global_work_size[] = {(size_t)ggml_nelements(tensor)/ggml_blck_size(tensor->type), 1, 1};
size_t local_work_size[] = {1, 1, 1};
cl_event evt;
CL_CHECK(clEnqueueNDRangeKernel(queue, kernel, 3, NULL,
global_work_size, local_work_size, 0, NULL, &evt));
CL_CHECK(clWaitForEvents(1, &evt));
CL_CHECK(clEnqueueReadBuffer(
queue, data_device, CL_TRUE, offset,
size, data, 0, NULL, NULL));
CL_CHECK(clReleaseMemObject(data_device));
return;
} else if (tensor->type == GGML_TYPE_MXFP4) {
ggml_tensor_extra_cl_mxfp4 * extra = (ggml_tensor_extra_cl_mxfp4 *)tensor->extra;
cl_int err;
cl_mem data_device = clCreateBuffer(context, CL_MEM_READ_WRITE,
ggml_nbytes(tensor), NULL, &err);
CL_CHECK(err);
cl_kernel kernel = backend_ctx->kernel_restore_block_mxfp4;
CL_CHECK(clSetKernelArg(kernel, 0, sizeof(cl_mem), &extra->q));
CL_CHECK(clSetKernelArg(kernel, 1, sizeof(cl_mem), &extra->e));
CL_CHECK(clSetKernelArg(kernel, 2, sizeof(cl_mem), &data_device));
size_t global_work_size[] = {(size_t)ggml_nelements(tensor)/ggml_blck_size(tensor->type), 1, 1};
size_t local_work_size[] = {1, 1, 1};
cl_event evt;
CL_CHECK(clEnqueueNDRangeKernel(queue, kernel, 3, NULL,
global_work_size, local_work_size, 0, NULL, &evt));
@@ -3658,6 +3864,19 @@ static void dump_tensor(ggml_backend_t backend, const struct ggml_tensor * tenso
CL_CHECK(clEnqueueReadBuffer(queue, extra->q, CL_TRUE, 0, size_q, buf_q, 0, NULL, NULL));
CL_CHECK(clEnqueueReadBuffer(queue, extra->d, CL_TRUE, 0, size_d, buf_d, 0, NULL, NULL));
CL_CHECK(clFinish(queue));
} else if (tensor->type == GGML_TYPE_MXFP4) {
ggml_tensor_extra_cl_mxfp4 * extra = (ggml_tensor_extra_cl_mxfp4 *) tensor->extra;
GGML_ASSERT(extra);
size_t size_q = ggml_nelements(tensor)/QK_MXFP4 * QK_MXFP4/2;
size_t size_e = ggml_nelements(tensor)/QK_MXFP4 * sizeof(char);
GGML_ASSERT(size_q + size_e == ggml_nbytes(tensor));
buf_q = malloc(size_q);
buf_d = malloc(size_e);
CL_CHECK(clEnqueueReadBuffer(queue, extra->q, CL_TRUE, 0, size_q, buf_q, 0, NULL, NULL));
CL_CHECK(clEnqueueReadBuffer(queue, extra->d, CL_TRUE, 0, size_e, buf_d, 0, NULL, NULL));
CL_CHECK(clFinish(queue));
} else {
// Read out the tensor from GPU memory.
ggml_tensor_extra_cl * extra = (ggml_tensor_extra_cl *) tensor->extra;
@@ -6048,6 +6267,7 @@ static void ggml_cl_mul_mat(ggml_backend_t backend, const ggml_tensor * src0, co
#ifdef GGML_OPENCL_SOA_Q
ggml_tensor_extra_cl_q4_0 * extra0_q4_0 = (ggml_tensor_extra_cl_q4_0 *)src0->extra;
ggml_tensor_extra_cl_mxfp4 * extra0_mxfp4 = (ggml_tensor_extra_cl_mxfp4 *)src0->extra;
#endif
const int ne00 = src0 ? src0->ne[0] : 0;
@@ -6752,6 +6972,45 @@ static void ggml_cl_mul_mat(ggml_backend_t backend, const ggml_tensor * src0, co
CL_CHECK(clSetKernelArg(kernel, 14, sizeof(int), &r3));
break;
case GGML_TYPE_MXFP4: {
#ifdef GGML_OPENCL_SOA_Q
kernel = backend_ctx->kernel_mul_mv_mxfp4_f32_flat;
cl_mem q;
if (backend_ctx->gpu_family == INTEL) {
nth0 = 16;
nth1 = 2;
ndst = nth1*2;
q = extra0_mxfp4->q;
} else if (backend_ctx->gpu_family == ADRENO) {
nth0 = 64;
nth1 = 2;
ndst = nth1*2;
q = extra0_mxfp4->q_img;
} else {
GGML_ASSERT(false && "TODO: Unknown GPU");
}
CL_CHECK(clSetKernelArg(kernel, 0, sizeof(cl_mem), &q));
CL_CHECK(clSetKernelArg(kernel, 1, sizeof(cl_mem), &extra0_mxfp4->e));
CL_CHECK(clSetKernelArg(kernel, 2, sizeof(cl_mem), &extra1->data_device));
CL_CHECK(clSetKernelArg(kernel, 3, sizeof(cl_ulong), &offset1));
CL_CHECK(clSetKernelArg(kernel, 4, sizeof(cl_mem), &extrad->data_device));
CL_CHECK(clSetKernelArg(kernel, 5, sizeof(cl_ulong), &offsetd));
CL_CHECK(clSetKernelArg(kernel, 6, sizeof(int), &ne00));
CL_CHECK(clSetKernelArg(kernel, 7, sizeof(cl_ulong), &nb01));
CL_CHECK(clSetKernelArg(kernel, 8, sizeof(cl_ulong), &nb02));
CL_CHECK(clSetKernelArg(kernel, 9, sizeof(cl_ulong), &nb03));
CL_CHECK(clSetKernelArg(kernel, 10, sizeof(int), &ne12));
CL_CHECK(clSetKernelArg(kernel, 11, sizeof(cl_ulong), &nb11));
CL_CHECK(clSetKernelArg(kernel, 12, sizeof(cl_ulong), &nb12));
CL_CHECK(clSetKernelArg(kernel, 13, sizeof(cl_ulong), &nb13));
CL_CHECK(clSetKernelArg(kernel, 14, sizeof(int), &ne0));
CL_CHECK(clSetKernelArg(kernel, 15, sizeof(int), &ne1));
CL_CHECK(clSetKernelArg(kernel, 16, sizeof(int), &r2));
CL_CHECK(clSetKernelArg(kernel, 17, sizeof(int), &r3));
#else
kernel = backend_ctx->kernel_mul_mv_mxfp4_f32;
if (backend_ctx->gpu_family == INTEL) {
@@ -6785,6 +7044,7 @@ static void ggml_cl_mul_mat(ggml_backend_t backend, const ggml_tensor * src0, co
CL_CHECK(clSetKernelArg(kernel, 16, sizeof(int), &r2));
CL_CHECK(clSetKernelArg(kernel, 17, sizeof(int), &r3));
CL_CHECK(clSetKernelArg(kernel, 18, sizeof(float)*nth0,nullptr));
#endif
break;
}
default:
@@ -6850,8 +7110,11 @@ static void ggml_cl_mul_mat_id(ggml_backend_t backend, const ggml_tensor * src0,
cl_ulong offset2 = extra2->offset + src2->view_offs;
cl_ulong offsetd = extrad->offset + dst->view_offs;
GGML_UNUSED(offset0);
#ifdef GGML_OPENCL_SOA_Q
ggml_tensor_extra_cl_q4_0 * extra0_q4_0 = (ggml_tensor_extra_cl_q4_0 *)src0->extra;
ggml_tensor_extra_cl_mxfp4 * extra0_mxfp4 = (ggml_tensor_extra_cl_mxfp4 *)src0->extra;
#endif
const int ne00 = src0->ne[0];
@@ -6940,6 +7203,51 @@ static void ggml_cl_mul_mat_id(ggml_backend_t backend, const ggml_tensor * src0,
break;
}
case GGML_TYPE_MXFP4: {
#ifdef GGML_OPENCL_SOA_Q
kernel = backend_ctx->kernel_mul_mv_id_mxfp4_f32_flat;
cl_mem q;
if (backend_ctx->gpu_family == INTEL) {
sgs = 16;
nsg = 2;
ndst = 2;
q = extra0_mxfp4->q;
} else if (backend_ctx->gpu_family == ADRENO) {
sgs = 64;
nsg = 1;
ndst = 4;
q = extra0_mxfp4->q_img;
} else {
GGML_ASSERT(false && "TODO: Unknown GPU");
}
CL_CHECK(clSetKernelArg(kernel, 0, sizeof(cl_mem), &q));
CL_CHECK(clSetKernelArg(kernel, 1, sizeof(cl_mem), &extra0_mxfp4->e));
CL_CHECK(clSetKernelArg(kernel, 2, sizeof(cl_mem), &extra1->data_device));
CL_CHECK(clSetKernelArg(kernel, 3, sizeof(cl_ulong), &offset1));
CL_CHECK(clSetKernelArg(kernel, 4, sizeof(cl_mem), &extra2->data_device));
CL_CHECK(clSetKernelArg(kernel, 5, sizeof(cl_ulong), &offset2));
CL_CHECK(clSetKernelArg(kernel, 6, sizeof(cl_mem), &extrad->data_device));
CL_CHECK(clSetKernelArg(kernel, 7, sizeof(cl_ulong), &offsetd));
CL_CHECK(clSetKernelArg(kernel, 8, sizeof(int), &ne00));
CL_CHECK(clSetKernelArg(kernel, 9, sizeof(cl_ulong), &nb01));
CL_CHECK(clSetKernelArg(kernel, 10, sizeof(cl_ulong), &nb02));
CL_CHECK(clSetKernelArg(kernel, 11, sizeof(cl_ulong), &nb03));
CL_CHECK(clSetKernelArg(kernel, 12, sizeof(int), &ne11));
CL_CHECK(clSetKernelArg(kernel, 13, sizeof(int), &ne12));
CL_CHECK(clSetKernelArg(kernel, 14, sizeof(cl_ulong), &nb11));
CL_CHECK(clSetKernelArg(kernel, 15, sizeof(cl_ulong), &nb12));
CL_CHECK(clSetKernelArg(kernel, 16, sizeof(cl_ulong), &nb13));
CL_CHECK(clSetKernelArg(kernel, 17, sizeof(int), &ne20));
CL_CHECK(clSetKernelArg(kernel, 18, sizeof(int), &ne21));
CL_CHECK(clSetKernelArg(kernel, 19, sizeof(cl_ulong), &nb21));
CL_CHECK(clSetKernelArg(kernel, 20, sizeof(int), &ne0));
CL_CHECK(clSetKernelArg(kernel, 21, sizeof(int), &ne1));
CL_CHECK(clSetKernelArg(kernel, 22, sizeof(int), &r2));
CL_CHECK(clSetKernelArg(kernel, 23, sizeof(int), &r3));
#else // GGML_OPENCL_SOA_Q
kernel = backend_ctx->kernel_mul_mv_id_mxfp4_f32;
if (backend_ctx->gpu_family == INTEL) {
@@ -6979,7 +7287,7 @@ static void ggml_cl_mul_mat_id(ggml_backend_t backend, const ggml_tensor * src0,
CL_CHECK(clSetKernelArg(kernel, 22, sizeof(int), &r2));
CL_CHECK(clSetKernelArg(kernel, 23, sizeof(int), &r3));
CL_CHECK(clSetKernelArg(kernel, 24, sizeof(float)*sgs,nullptr));
#endif // GGML_OPENCL_SOA_Q
break;
}
default:

View File

@@ -116,3 +116,49 @@ kernel void kernel_convert_block_q4_0_noshuffle(
#endif
}
}
//------------------------------------------------------------------------------
// block_q4_0
//------------------------------------------------------------------------------
#define QK_MXFP4 32
struct block_mxfp4 {
uchar e; // E8M0
uchar qs[QK_MXFP4 / 2];
};
//------------------------------------------------------------------------------
// kernel_convert_block_mxfp4
// Convert the block_mxfp4 format to 2 separate arrays (AOS -> SOA).
// This kernel does not deshuffle the bits.
//------------------------------------------------------------------------------
kernel void kernel_convert_block_mxfp4(
global struct block_mxfp4 * src0,
global uchar * dst_q,
global uchar * dst_e
) {
global struct block_mxfp4 * b = (global struct block_mxfp4 *) src0 + get_global_id(0);
global uchar * q = (global uchar *) dst_q + QK_MXFP4 / 2 * get_global_id(0);
global uchar * e = (global uchar *) dst_e + get_global_id(0);
*e = b->e;
for (int i = 0; i < QK_MXFP4 / 2; ++i) {
q[i] = b->qs[i];
}
}
kernel void kernel_restore_block_mxfp4(
global uchar * src_q,
global half * src_e,
global struct block_mxfp4 * dst
) {
global struct block_mxfp4 * b = (global struct block_mxfp4 *) dst + get_global_id(0);
global uchar * q = (global uchar *) src_q + QK_MXFP4 / 2 * get_global_id(0);
global uchar * e = (global uchar *) src_e + get_global_id(0);
b->e = *e;
for (int i = 0; i < QK_MXFP4 / 2; ++i) {
b->qs[i] = q[i];
}
}

View File

@@ -0,0 +1,176 @@
#pragma OPENCL EXTENSION cl_khr_fp16 : enable
#ifdef cl_intel_subgroups
#pragma OPENCL EXTENSION cl_intel_subgroups : enable
#else
#pragma OPENCL EXTENSION cl_khr_subgroups : enable
#endif
#ifdef cl_intel_required_subgroup_size
#pragma OPENCL EXTENSION cl_intel_required_subgroup_size : enable
#define INTEL_GPU 1
#define REQD_SUBGROUP_SIZE_16 __attribute__((intel_reqd_sub_group_size(16)))
#define REQD_SUBGROUP_SIZE_32 __attribute__((intel_reqd_sub_group_size(32)))
#elif defined(cl_qcom_reqd_sub_group_size)
#pragma OPENCL EXTENSION cl_qcom_reqd_sub_group_size : enable
#define ADRENO_GPU 1
#define REQD_SUBGROUP_SIZE_64 __attribute__((qcom_reqd_sub_group_size("half")))
#define REQD_SUBGROUP_SIZE_128 __attribute__((qcom_reqd_sub_group_size("full")))
#endif
#define QK_MXFP4 32
static inline half4 mxfp4_to_fp16_packed(ushort fp4x4) {
ushort2 fp16_packed_a, fp16_packed_b, bias_a, bias_b, sign_a, sign_b;
fp16_packed_a.lo = (fp4x4 << 9) & 0x0E00;
fp16_packed_a.hi = (fp4x4 << 5) & 0x0E00;
fp16_packed_b.lo = (fp4x4 << 1) & 0x0E00;
fp16_packed_b.hi = (fp4x4 >> 3) & 0x0E00;
bias_a.lo = (fp16_packed_a.lo == 0) ? 0x0 : 0x3800;
bias_a.hi = (fp16_packed_a.hi == 0) ? 0x0 : 0x3800;
bias_b.lo = (fp16_packed_b.lo == 0) ? 0x0 : 0x3800;
bias_b.hi = (fp16_packed_b.hi == 0) ? 0x0 : 0x3800;
fp16_packed_a.lo = (fp16_packed_a.lo == 0x0200) ? 0x0 : fp16_packed_a.lo;
fp16_packed_a.hi = (fp16_packed_a.hi == 0x0200) ? 0x0 : fp16_packed_a.hi;
fp16_packed_b.lo = (fp16_packed_b.lo == 0x0200) ? 0x0 : fp16_packed_b.lo;
fp16_packed_b.hi = (fp16_packed_b.hi == 0x0200) ? 0x0 : fp16_packed_b.hi;
sign_a.lo = (fp4x4 << 12) & 0x8000;
sign_a.hi = (fp4x4 << 8) & 0x8000;
sign_b.lo = (fp4x4 << 4) & 0x8000;
sign_b.hi = fp4x4 & 0x8000;
fp16_packed_a = sign_a + bias_a + fp16_packed_a;
fp16_packed_b = sign_b + bias_b + fp16_packed_b;
return as_half4((ushort4)(fp16_packed_a, fp16_packed_b));
}
static inline float e8m0_to_fp32(uchar x) {
int bits;
bits = (x == 0) ? 0x00400000 : ((uint) x << 23);
return as_float(bits);
}
#ifdef INTEL_GPU
#define N_R0_MXFP4 2 // number of rows each subgroup works on
#define N_SG_MXFP4 2 // number of subgroups in a work group
#define N_SIMDWIDTH 16 // subgroup size
#elif defined (ADRENO_GPU)
#define N_R0_MXFP4 4
#define N_SG_MXFP4 1
#define N_SIMDWIDTH 64
#define SRC0Q_IMG
#endif
kernel void kernel_mul_mv_id_mxfp4_f32_flat(
#ifdef SRC0Q_IMG
__read_only image1d_buffer_t src0_q,
#else
global uchar * src0_q,
#endif
global uchar * src0_e,
global uchar * src1,
ulong offset1,
global uchar * src2,
ulong offset2,
global uchar * dst,
ulong offsetd,
int ne00,
ulong nb01,
ulong nb02,
ulong nb03,
int ne11,
int ne12,
ulong nb11,
ulong nb12,
ulong nb13,
int ne20,
int ne21,
ulong nb21,
int ne0,
int ne1,
int r2,
int r3
) {
dst = dst + offsetd;
const int iid1 = get_group_id(2) / ne20;
const int idx = get_group_id(2) % ne20;
uint i02 = ((global uint *) (src2 + offset2 + iid1 * nb21))[idx];
int i11 = idx % ne11;
int nb = ne00 / QK_MXFP4;
uint src0_off = i02*nb02;
src0_off /= 17; // 17 = sizeof(block_mxfp4)
src0_e = src0_e + src0_off;
dst = dst + (idx * ne0 + iid1 * ne1 * ne0) * sizeof(float);
int r0 = get_group_id(0);
int r1 = get_group_id(1);
int first_row = (r0 * N_SG_MXFP4 + get_sub_group_id()) * N_R0_MXFP4;
uint offset_src0 = first_row*nb01;
offset_src0 /= 17; // 17 = sizeof(block_mxfp4)
#ifdef SRC0Q_IMG
ulong offset_q = src0_off + offset_src0;
#else
src0_q = src0_q + src0_off*16;
global uchar16 * x_q = (global uchar16 *)(src0_q) + offset_src0;
#endif
global uchar * x_e = src0_e + offset_src0;
const short ix = get_sub_group_local_id() >> 1;
const short it = get_sub_group_local_id() & 1;
float sumf[N_R0_MXFP4] = {0.f};
src1 = src1 + offset1 + i11 * nb11 + iid1 * nb12;
global float * y = (global float *) (src1 + r1 * nb11);
global float * yb = y + ix * QK_MXFP4 + it * 8;
for (int ib = ix; ib < nb; ib += N_SIMDWIDTH / 2) {
global float4 * y4 = (global float4 *)yb;
#pragma unroll
for (short row = 0; row < N_R0_MXFP4; row++) {
uchar xb_e = x_e[row * nb + ib];
#ifdef SRC0Q_IMG
ushort4 xb_q = as_ushort4(read_imageui(src0_q, (offset_q + row * nb + ib) * 2 + it).xy);
#else
ushort4 xb_q = vload4(0, (global ushort *)((global uchar *)(x_q + row * nb + ib) + 8 * it));
#endif
half4 fp16x4_0 = mxfp4_to_fp16_packed(xb_q.s0);
half4 fp16x4_1 = mxfp4_to_fp16_packed(xb_q.s1);
float4 acc1 = y4[0] * (float4)(fp16x4_0.s0, fp16x4_0.s2, fp16x4_1.s0, fp16x4_1.s2);
acc1 += y4[4] * (float4)(fp16x4_0.s1, fp16x4_0.s3, fp16x4_1.s1, fp16x4_1.s3);
fp16x4_0 = mxfp4_to_fp16_packed(xb_q.s2);
fp16x4_1 = mxfp4_to_fp16_packed(xb_q.s3);
acc1 += y4[1] * (float4)(fp16x4_0.s0, fp16x4_0.s2, fp16x4_1.s0, fp16x4_1.s2);
acc1 += y4[5] * (float4)(fp16x4_0.s1, fp16x4_0.s3, fp16x4_1.s1, fp16x4_1.s3);
sumf[row] += e8m0_to_fp32(xb_e) * ((acc1.s0 + acc1.s1) + (acc1.s2 + acc1.s3));
}
yb += (N_SIMDWIDTH / 2) * QK_MXFP4;
}
global float * dst_f32 = (global float *)dst + (ulong)r1 * ne0;
for (int row = 0; row < N_R0_MXFP4 && first_row + row < ne0; ++row) {
float sum_all = sub_group_reduce_add(sumf[row]);
if (get_sub_group_local_id() == 0) {
dst_f32[first_row + row] = sum_all;
}
}
}

View File

@@ -0,0 +1,167 @@
#pragma OPENCL EXTENSION cl_khr_fp16 : enable
#ifdef cl_intel_subgroups
#pragma OPENCL EXTENSION cl_intel_subgroups : enable
#else
#pragma OPENCL EXTENSION cl_khr_subgroups : enable
#endif
#ifdef cl_intel_required_subgroup_size
#pragma OPENCL EXTENSION cl_intel_required_subgroup_size : enable
#define INTEL_GPU 1
#define REQD_SUBGROUP_SIZE_16 __attribute__((intel_reqd_sub_group_size(16)))
#define REQD_SUBGROUP_SIZE_32 __attribute__((intel_reqd_sub_group_size(32)))
#elif defined(cl_qcom_reqd_sub_group_size)
#pragma OPENCL EXTENSION cl_qcom_reqd_sub_group_size : enable
#define ADRENO_GPU 1
#define REQD_SUBGROUP_SIZE_64 __attribute__((qcom_reqd_sub_group_size("half")))
#define REQD_SUBGROUP_SIZE_128 __attribute__((qcom_reqd_sub_group_size("full")))
#endif
#define QK_MXFP4 32
static inline half4 mxfp4_to_fp16_packed(ushort fp4x4) {
ushort2 fp16_packed_a, fp16_packed_b, bias_a, bias_b, sign_a, sign_b;
fp16_packed_a.lo = (fp4x4 << 9) & 0x0E00;
fp16_packed_a.hi = (fp4x4 << 5) & 0x0E00;
fp16_packed_b.lo = (fp4x4 << 1) & 0x0E00;
fp16_packed_b.hi = (fp4x4 >> 3) & 0x0E00;
bias_a.lo = (fp16_packed_a.lo == 0) ? 0x0 : 0x3800;
bias_a.hi = (fp16_packed_a.hi == 0) ? 0x0 : 0x3800;
bias_b.lo = (fp16_packed_b.lo == 0) ? 0x0 : 0x3800;
bias_b.hi = (fp16_packed_b.hi == 0) ? 0x0 : 0x3800;
fp16_packed_a.lo = (fp16_packed_a.lo == 0x0200) ? 0x0 : fp16_packed_a.lo;
fp16_packed_a.hi = (fp16_packed_a.hi == 0x0200) ? 0x0 : fp16_packed_a.hi;
fp16_packed_b.lo = (fp16_packed_b.lo == 0x0200) ? 0x0 : fp16_packed_b.lo;
fp16_packed_b.hi = (fp16_packed_b.hi == 0x0200) ? 0x0 : fp16_packed_b.hi;
sign_a.lo = (fp4x4 << 12) & 0x8000;
sign_a.hi = (fp4x4 << 8) & 0x8000;
sign_b.lo = (fp4x4 << 4) & 0x8000;
sign_b.hi = fp4x4 & 0x8000;
fp16_packed_a = sign_a + bias_a + fp16_packed_a;
fp16_packed_b = sign_b + bias_b + fp16_packed_b;
return as_half4((ushort4)(fp16_packed_a, fp16_packed_b));
}
static inline float e8m0_to_fp32(uchar x) {
int bits;
bits = (x == 0) ? 0x00400000 : ((uint) x << 23);
return as_float(bits);
}
#ifdef INTEL_GPU
#define N_R0_MXFP4 2 // number of rows each subgroup works on
#define N_SG_MXFP4 2 // number of subgroups in a work group
#define N_SIMDWIDTH 16 // subgroup size
#elif defined (ADRENO_GPU)
#define N_R0_MXFP4 2
#define N_SG_MXFP4 2
#define N_SIMDWIDTH 64
#define SRC0Q_IMG
#endif
#ifdef INTEL_GPU
REQD_SUBGROUP_SIZE_16
#elif defined (ADRENO_GPU)
REQD_SUBGROUP_SIZE_64
#endif
kernel void kernel_mul_mv_mxfp4_f32_flat(
#ifdef SRC0Q_IMG
__read_only image1d_buffer_t src0_q,
#else
global uchar * src0_q,
#endif
global uchar * src0_e,
global uchar * src1,
ulong offset1,
global uchar * dst,
ulong offsetd,
int ne00,
ulong nb01,
ulong nb02,
ulong nb03,
int ne12,
ulong nb11,
ulong nb12,
ulong nb13,
int ne0,
int ne1,
int r2,
int r3
) {
src1 = src1 + offset1;
dst = dst + offsetd;
int nb = ne00 / QK_MXFP4;
int r0 = get_group_id(0);
int r1 = get_group_id(1);
int im = get_group_id(2);
int first_row = (r0 * N_SG_MXFP4 + get_sub_group_id()) * N_R0_MXFP4;
uint i12 = im % ne12;
uint i13 = im / ne12;
uint offset_src0 = first_row*nb01 + (i12/r2)*nb02 + (i13/r3)*nb03;
// 17 = sizeof(block_mxfp4)
offset_src0 /= 17;
#ifdef SRC0Q_IMG
ulong offset_q = offset_src0;
#else
global uchar16 * x_q = (global uchar16 *)(src0_q) + offset_src0;
#endif
global uchar * x_e = src0_e + offset_src0;
ulong offset_src1 = r1 * nb11 + i12 * nb12 + i13 * nb13;
global float * y = (global float *)(src1 + offset_src1);
const short ix = get_sub_group_local_id() >> 1; // 0...15
const short it = get_sub_group_local_id() & 1; // 0 or 1
float sumf[N_R0_MXFP4] = {0.f};
global float * yb = y + ix * QK_MXFP4 + it * 8;
for (int ib = ix; ib < nb; ib += N_SIMDWIDTH/2) {
global float4 * y4 = (global float4 *)yb;
#pragma unroll
for (short row = 0; row < N_R0_MXFP4; row++) {
uchar xb_e = x_e[row * nb + ib];
#ifdef SRC0Q_IMG
ushort4 xb_q = as_ushort4(read_imageui(src0_q, (offset_q + row * nb + ib) * 2 + it).xy);
#else
ushort4 xb_q = vload4(0, (global ushort *)((global uchar *)(x_q + row * nb + ib) + 8 * it));
#endif
half4 fp16x4_0 = mxfp4_to_fp16_packed(xb_q.s0);
half4 fp16x4_1 = mxfp4_to_fp16_packed(xb_q.s1);
float4 acc1 = y4[0] * (float4)(fp16x4_0.s0, fp16x4_0.s2, fp16x4_1.s0, fp16x4_1.s2);
acc1 += y4[4] * (float4)(fp16x4_0.s1, fp16x4_0.s3, fp16x4_1.s1, fp16x4_1.s3);
fp16x4_0 = mxfp4_to_fp16_packed(xb_q.s2);
fp16x4_1 = mxfp4_to_fp16_packed(xb_q.s3);
acc1 += y4[1] * (float4)(fp16x4_0.s0, fp16x4_0.s2, fp16x4_1.s0, fp16x4_1.s2);
acc1 += y4[5] * (float4)(fp16x4_0.s1, fp16x4_0.s3, fp16x4_1.s1, fp16x4_1.s3);
sumf[row] += e8m0_to_fp32(xb_e) * ((acc1.s0 + acc1.s1) + (acc1.s2 + acc1.s3));
}
yb += (N_SIMDWIDTH/2) * QK_MXFP4;
}
global float * dst_f32 = (global float *) dst + (ulong)im*ne0*ne1 + (ulong)r1*ne0;
for (int row = 0; row < N_R0_MXFP4 && first_row + row < ne0; ++row) {
float sum_all = sub_group_reduce_add(sumf[row]);
if (get_sub_group_local_id() == 0) {
dst_f32[first_row + row] = sum_all;
}
}
}