mirror of
https://github.com/ggml-org/llama.cpp.git
synced 2025-11-14 11:07:10 +00:00
ggml : implement set_rows with i32 index (#16159)
* implement set_rows with i32 index * template fix * test quantized path warnings-- * Apply suggestions from code review Co-authored-by: Georgi Gerganov <ggerganov@gmail.com> * forgotten name change * deduplicate cuda/sycl and test-fix * indent++ * vulkan: support set_rows with i32 index type (#16162) * disable i32 index for webgpu for now --------- Co-authored-by: Georgi Gerganov <ggerganov@gmail.com> Co-authored-by: Jeff Bolz <jbolz@nvidia.com>
This commit is contained in:
@@ -4,9 +4,9 @@
|
||||
typedef void (*set_rows_kernel_t)(const char * src, char * dst);
|
||||
|
||||
// Generic quantized set_rows kernel template
|
||||
template<typename block_type, int qk, void (*quantize_func)(const float*, block_type*)>
|
||||
template<typename idx_t, typename block_type, int qk, void (*quantize_func)(const float*, block_type*)>
|
||||
static __global__ void k_set_rows_quant(
|
||||
const float * __restrict__ src0, const int64_t * __restrict__ src1, block_type * __restrict__ dst,
|
||||
const float * __restrict__ src0, const idx_t * __restrict__ src1, block_type * __restrict__ dst,
|
||||
const int64_t ne00, const int64_t ne01, const int64_t ne02, const int64_t ne03,
|
||||
const int64_t ne10, const int64_t ne11, const int64_t ne12, const int64_t ne13,
|
||||
const int64_t s01, const int64_t s02, const int64_t s03,
|
||||
@@ -45,9 +45,9 @@ static __global__ void k_set_rows_quant(
|
||||
}
|
||||
|
||||
// Template dispatch function for quantized set_rows
|
||||
template<typename block_type, int qk, void (*quantize_func)(const float*, block_type*)>
|
||||
template<typename idx_t, typename block_type, int qk, void (*quantize_func)(const float*, block_type*)>
|
||||
static void set_rows_cuda_quant(
|
||||
const float * src0_d, const int64_t * src1_d, block_type * dst_d,
|
||||
const float * src0_d, const idx_t * src1_d, block_type * dst_d,
|
||||
const int64_t ne00, const int64_t ne01, const int64_t ne02, const int64_t ne03,
|
||||
const int64_t ne10, const int64_t ne11, const int64_t ne12, const int64_t ne13,
|
||||
const size_t nb01, const size_t nb02, const size_t nb03,
|
||||
@@ -64,15 +64,15 @@ static void set_rows_cuda_quant(
|
||||
const int64_t s01 = nb01/sizeof(float);
|
||||
const int64_t s02 = nb02/sizeof(float);
|
||||
const int64_t s03 = nb03/sizeof(float);
|
||||
const int64_t s10 = nb10/sizeof(int64_t);
|
||||
const int64_t s11 = nb11/sizeof(int64_t);
|
||||
const int64_t s12 = nb12/sizeof(int64_t);
|
||||
const int64_t s10 = nb10/sizeof(idx_t);
|
||||
const int64_t s11 = nb11/sizeof(idx_t);
|
||||
const int64_t s12 = nb12/sizeof(idx_t);
|
||||
const int64_t s1 = nb1;
|
||||
const int64_t s2 = nb2;
|
||||
const int64_t s3 = nb3;
|
||||
|
||||
if (ne_total > 0) {
|
||||
k_set_rows_quant<block_type, qk, quantize_func><<<grid_size, block_size, 0, stream>>>(
|
||||
k_set_rows_quant<idx_t, block_type, qk, quantize_func><<<grid_size, block_size, 0, stream>>>(
|
||||
src0_d, src1_d, dst_d,
|
||||
ne00, ne01, ne02, ne03,
|
||||
ne10, ne11, ne12, ne13,
|
||||
@@ -82,9 +82,9 @@ static void set_rows_cuda_quant(
|
||||
}
|
||||
}
|
||||
|
||||
template<typename src_t, typename dst_t>
|
||||
template<typename src_t, typename idx_t, typename dst_t>
|
||||
static __global__ void k_set_rows(
|
||||
const src_t * __restrict__ src0, const int64_t * __restrict__ src1, dst_t * __restrict__ dst,
|
||||
const src_t * __restrict__ src0, const idx_t * __restrict__ src1, dst_t * __restrict__ dst,
|
||||
const int64_t ne00, const int64_t ne01, const int64_t ne02, const int64_t ne03,
|
||||
const int64_t ne10, const int64_t ne11, const int64_t ne12, const int64_t ne13,
|
||||
const int64_t s01, const int64_t s02, const int64_t s03,
|
||||
@@ -118,9 +118,9 @@ static __global__ void k_set_rows(
|
||||
GGML_UNUSED(ne13);
|
||||
}
|
||||
|
||||
template<typename src_t, typename dst_t>
|
||||
template<typename src_t, typename idx_t, typename dst_t>
|
||||
static void set_rows_cuda(
|
||||
const src_t * src0_d, const int64_t * src1_d, dst_t * dst_d,
|
||||
const src_t * src0_d, const idx_t * src1_d, dst_t * dst_d,
|
||||
const int64_t ne00, const int64_t ne01, const int64_t ne02, const int64_t ne03,
|
||||
const int64_t ne10, const int64_t ne11, const int64_t ne12, const int64_t ne13,
|
||||
const size_t nb01, const size_t nb02, const size_t nb03,
|
||||
@@ -137,9 +137,9 @@ static void set_rows_cuda(
|
||||
const int64_t s01 = nb01/sizeof(src_t);
|
||||
const int64_t s02 = nb02/sizeof(src_t);
|
||||
const int64_t s03 = nb03/sizeof(src_t);
|
||||
const int64_t s10 = nb10/sizeof(int64_t);
|
||||
const int64_t s11 = nb11/sizeof(int64_t);
|
||||
const int64_t s12 = nb12/sizeof(int64_t);
|
||||
const int64_t s10 = nb10/sizeof(idx_t);
|
||||
const int64_t s11 = nb11/sizeof(idx_t);
|
||||
const int64_t s12 = nb12/sizeof(idx_t);
|
||||
const int64_t s1 = nb1/sizeof(dst_t);
|
||||
const int64_t s2 = nb2/sizeof(dst_t);
|
||||
const int64_t s3 = nb3/sizeof(dst_t);
|
||||
@@ -155,23 +155,16 @@ static void set_rows_cuda(
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
void ggml_cuda_op_set_rows(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
|
||||
const ggml_tensor * src0 = dst->src[0];
|
||||
const ggml_tensor * src1 = dst->src[1];
|
||||
|
||||
GGML_ASSERT(src0->type == GGML_TYPE_F32);
|
||||
GGML_ASSERT(src1->type == GGML_TYPE_I64);
|
||||
template<typename src_t, typename idx_t>
|
||||
static void set_rows_cuda(ggml_backend_cuda_context & ctx, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
|
||||
const src_t * src0_d = (const src_t *)src0->data;
|
||||
const idx_t * src1_d = (const idx_t *)src1->data;
|
||||
|
||||
GGML_TENSOR_BINARY_OP_LOCALS
|
||||
|
||||
const float * src0_d = (const float *)src0->data;
|
||||
const int64_t * src1_d = (const int64_t *)src1->data;
|
||||
|
||||
cudaStream_t stream = ctx.stream();
|
||||
|
||||
|
||||
|
||||
if (dst->type == GGML_TYPE_F32) {
|
||||
set_rows_cuda(
|
||||
src0_d, src1_d, (float*)dst->data,
|
||||
@@ -203,7 +196,7 @@ void ggml_cuda_op_set_rows(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
|
||||
stream
|
||||
);
|
||||
} else if (dst->type == GGML_TYPE_Q4_0) {
|
||||
set_rows_cuda_quant<block_q4_0, QK4_0, quantize_f32_q4_0_block>(
|
||||
set_rows_cuda_quant<idx_t, block_q4_0, QK4_0, quantize_f32_q4_0_block>(
|
||||
src0_d, src1_d, (block_q4_0*)dst->data,
|
||||
ne00, ne01, ne02, ne03,
|
||||
ne10, ne11, ne12, ne13,
|
||||
@@ -213,7 +206,7 @@ void ggml_cuda_op_set_rows(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
|
||||
stream
|
||||
);
|
||||
} else if (dst->type == GGML_TYPE_Q4_1) {
|
||||
set_rows_cuda_quant<block_q4_1, QK4_1, quantize_f32_q4_1_block>(
|
||||
set_rows_cuda_quant<idx_t, block_q4_1, QK4_1, quantize_f32_q4_1_block>(
|
||||
src0_d, src1_d, (block_q4_1*)dst->data,
|
||||
ne00, ne01, ne02, ne03,
|
||||
ne10, ne11, ne12, ne13,
|
||||
@@ -223,7 +216,7 @@ void ggml_cuda_op_set_rows(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
|
||||
stream
|
||||
);
|
||||
} else if (dst->type == GGML_TYPE_Q5_0) {
|
||||
set_rows_cuda_quant<block_q5_0, QK5_0, quantize_f32_q5_0_block>(
|
||||
set_rows_cuda_quant<idx_t, block_q5_0, QK5_0, quantize_f32_q5_0_block>(
|
||||
src0_d, src1_d, (block_q5_0*)dst->data,
|
||||
ne00, ne01, ne02, ne03,
|
||||
ne10, ne11, ne12, ne13,
|
||||
@@ -233,7 +226,7 @@ void ggml_cuda_op_set_rows(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
|
||||
stream
|
||||
);
|
||||
} else if (dst->type == GGML_TYPE_Q5_1) {
|
||||
set_rows_cuda_quant<block_q5_1, QK5_1, quantize_f32_q5_1_block>(
|
||||
set_rows_cuda_quant<idx_t, block_q5_1, QK5_1, quantize_f32_q5_1_block>(
|
||||
src0_d, src1_d, (block_q5_1*)dst->data,
|
||||
ne00, ne01, ne02, ne03,
|
||||
ne10, ne11, ne12, ne13,
|
||||
@@ -243,7 +236,7 @@ void ggml_cuda_op_set_rows(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
|
||||
stream
|
||||
);
|
||||
} else if (dst->type == GGML_TYPE_Q8_0) {
|
||||
set_rows_cuda_quant<block_q8_0, QK8_0, quantize_f32_q8_0_block>(
|
||||
set_rows_cuda_quant<idx_t, block_q8_0, QK8_0, quantize_f32_q8_0_block>(
|
||||
src0_d, src1_d, (block_q8_0*)dst->data,
|
||||
ne00, ne01, ne02, ne03,
|
||||
ne10, ne11, ne12, ne13,
|
||||
@@ -253,7 +246,7 @@ void ggml_cuda_op_set_rows(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
|
||||
stream
|
||||
);
|
||||
} else if (dst->type == GGML_TYPE_IQ4_NL) {
|
||||
set_rows_cuda_quant<block_iq4_nl, QK4_NL, quantize_f32_iq4_nl_block>(
|
||||
set_rows_cuda_quant<idx_t, block_iq4_nl, QK4_NL, quantize_f32_iq4_nl_block>(
|
||||
src0_d, src1_d, (block_iq4_nl*)dst->data,
|
||||
ne00, ne01, ne02, ne03,
|
||||
ne10, ne11, ne12, ne13,
|
||||
@@ -266,3 +259,18 @@ void ggml_cuda_op_set_rows(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
|
||||
GGML_ABORT("unsupported type %s", ggml_type_name(dst->type));
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
void ggml_cuda_op_set_rows(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
|
||||
const ggml_tensor * src0 = dst->src[0];
|
||||
const ggml_tensor * src1 = dst->src[1];
|
||||
|
||||
GGML_ASSERT(src0->type == GGML_TYPE_F32);
|
||||
GGML_ASSERT(src1->type == GGML_TYPE_I64 || src1->type == GGML_TYPE_I32);
|
||||
|
||||
if (src1->type == GGML_TYPE_I64) {
|
||||
set_rows_cuda<float, int64_t>(ctx, src0, src1, dst);
|
||||
} else {
|
||||
set_rows_cuda<float, int32_t>(ctx, src0, src1, dst);
|
||||
}
|
||||
}
|
||||
|
||||
Reference in New Issue
Block a user