mirror of
				https://github.com/ggml-org/llama.cpp.git
				synced 2025-11-03 09:22:01 +00:00 
			
		
		
		
	imatrix : use GGUF to store imatrix data
This commit is contained in:
		
							
								
								
									
										118
									
								
								convert_legacy_imatrix_to_gguf.py
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										118
									
								
								convert_legacy_imatrix_to_gguf.py
									
									
									
									
									
										Normal file
									
								
							@@ -0,0 +1,118 @@
 | 
				
			|||||||
 | 
					#!/usr/bin/env python3
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					from __future__ import annotations
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					import os
 | 
				
			||||||
 | 
					import sys
 | 
				
			||||||
 | 
					import logging
 | 
				
			||||||
 | 
					import argparse
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					from typing import Any
 | 
				
			||||||
 | 
					from pathlib import Path
 | 
				
			||||||
 | 
					from dataclasses import dataclass
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					import numpy as np
 | 
				
			||||||
 | 
					import numpy.typing as npt
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					if 'NO_LOCAL_GGUF' not in os.environ:
 | 
				
			||||||
 | 
					    sys.path.insert(1, str(Path(__file__).parent / 'gguf-py'))
 | 
				
			||||||
 | 
					import gguf
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					logger = logging.getLogger("imatrix-to-gguf")
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					class IMatrixWriter(gguf.GGUFWriter):
 | 
				
			||||||
 | 
					    def add_architecture(self) -> None:
 | 
				
			||||||
 | 
					        # no arch is stored in imatrix files
 | 
				
			||||||
 | 
					        pass
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					@dataclass
 | 
				
			||||||
 | 
					class IMatrixEntry:
 | 
				
			||||||
 | 
					    values: np.ndarray[Any, np.dtype[np.float32]]
 | 
				
			||||||
 | 
					    counts: np.ndarray[Any, np.dtype[np.float32]]
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					class IMatrixReader:
 | 
				
			||||||
 | 
					    chunk_size: int = 512  # guess
 | 
				
			||||||
 | 
					    offset: int = 0
 | 
				
			||||||
 | 
					    data: np.ndarray[Any, np.dtype[np.uint8]]
 | 
				
			||||||
 | 
					    n_enties: int
 | 
				
			||||||
 | 
					    entries: dict[str, IMatrixEntry]
 | 
				
			||||||
 | 
					    chunk_count: int
 | 
				
			||||||
 | 
					    dataset: str
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					    def _get(self, dtype: npt.DTypeLike, count: int = 1) -> npt.NDArray[Any]:
 | 
				
			||||||
 | 
					        count = int(count)
 | 
				
			||||||
 | 
					        itemsize = int(np.empty([], dtype=dtype).itemsize)
 | 
				
			||||||
 | 
					        offset = self.offset
 | 
				
			||||||
 | 
					        self.offset = offset + itemsize * count
 | 
				
			||||||
 | 
					        return self.data[offset:self.offset].view(dtype=dtype)[:count]
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					    def __init__(self, imatrix: Path):
 | 
				
			||||||
 | 
					        self.offset = 0
 | 
				
			||||||
 | 
					        self.entries = {}
 | 
				
			||||||
 | 
					        self.data = np.memmap(imatrix)
 | 
				
			||||||
 | 
					        n_entries = self._get(np.int32).item()
 | 
				
			||||||
 | 
					        assert n_entries >= 0
 | 
				
			||||||
 | 
					        for _ in range(n_entries):
 | 
				
			||||||
 | 
					            len = self._get(np.int32).item()
 | 
				
			||||||
 | 
					            name = self._get(np.uint8, len).tobytes().decode("utf-8")
 | 
				
			||||||
 | 
					            ncall = self._get(np.int32).item()
 | 
				
			||||||
 | 
					            nval = self._get(np.int32).item()
 | 
				
			||||||
 | 
					            data = self._get(np.float32, nval)
 | 
				
			||||||
 | 
					            assert name not in self.entries, f"duplicated name: {name!r}"
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					            self.entries[name] = IMatrixEntry(data, np.array([ncall * self.chunk_size], dtype=np.float32))
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					        self.chunk_count = self._get(np.int32).item()
 | 
				
			||||||
 | 
					        self.dataset = self._get(np.uint8, self._get(np.int32).item()).tobytes().decode("utf-8")
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					    def to_writer(self, outfile: Path) -> IMatrixWriter:
 | 
				
			||||||
 | 
					        writer = IMatrixWriter(path=outfile, arch="")
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					        writer.add_type(gguf.GGUFType.IMATRIX)
 | 
				
			||||||
 | 
					        writer.add_key_value(gguf.Keys.IMatrix.CHUNK_COUNT, self.chunk_count, gguf.GGUFValueType.UINT32)
 | 
				
			||||||
 | 
					        writer.add_key_value(gguf.Keys.IMatrix.CHUNK_SIZE, self.chunk_size, gguf.GGUFValueType.UINT32)
 | 
				
			||||||
 | 
					        writer.add_key_value(gguf.Keys.IMatrix.DATASET, self.dataset, gguf.GGUFValueType.STRING)
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					        for name, entry in self.entries.items():
 | 
				
			||||||
 | 
					            writer.add_tensor(name + ".sums", entry.values)
 | 
				
			||||||
 | 
					            writer.add_tensor(name + ".counts", entry.counts)
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					        return writer
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					def parse_args():
 | 
				
			||||||
 | 
					    parser = argparse.ArgumentParser(
 | 
				
			||||||
 | 
					        description="Convert an old imatrix.dat file to a GGUF compatible file")
 | 
				
			||||||
 | 
					    parser.add_argument(
 | 
				
			||||||
 | 
					        "--outfile", type=Path,
 | 
				
			||||||
 | 
					        help="path to write to; default: based on input.",
 | 
				
			||||||
 | 
					    )
 | 
				
			||||||
 | 
					    parser.add_argument(
 | 
				
			||||||
 | 
					        "--verbose", action="store_true",
 | 
				
			||||||
 | 
					        help="increase output verbosity",
 | 
				
			||||||
 | 
					    )
 | 
				
			||||||
 | 
					    parser.add_argument(
 | 
				
			||||||
 | 
					        "imatrix", type=Path,
 | 
				
			||||||
 | 
					        help="path to an imatrix file",
 | 
				
			||||||
 | 
					    )
 | 
				
			||||||
 | 
					    return parser.parse_args()
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					if __name__ == "__main__":
 | 
				
			||||||
 | 
					    args = parse_args()
 | 
				
			||||||
 | 
					    logging.basicConfig(level=logging.DEBUG if args.verbose else logging.INFO)
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					    if args.outfile is None:
 | 
				
			||||||
 | 
					        input_file: Path = args.imatrix
 | 
				
			||||||
 | 
					        if input_file.suffix != ".gguf":
 | 
				
			||||||
 | 
					            args.outfile = input_file.with_suffix(".gguf")
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					    writer = IMatrixReader(args.imatrix).to_writer(args.outfile)
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					    writer.write_header_to_file(args.outfile)
 | 
				
			||||||
 | 
					    writer.write_kv_data_to_file()
 | 
				
			||||||
 | 
					    writer.write_tensors_to_file()
 | 
				
			||||||
@@ -5,11 +5,9 @@
 | 
				
			|||||||
#include <cstdio>
 | 
					#include <cstdio>
 | 
				
			||||||
#include <cstring>
 | 
					#include <cstring>
 | 
				
			||||||
#include <ctime>
 | 
					#include <ctime>
 | 
				
			||||||
#include <sstream>
 | 
					 | 
				
			||||||
#include <thread>
 | 
					#include <thread>
 | 
				
			||||||
#include <mutex>
 | 
					#include <mutex>
 | 
				
			||||||
#include <vector>
 | 
					#include <vector>
 | 
				
			||||||
#include <fstream>
 | 
					 | 
				
			||||||
#include <unordered_map>
 | 
					#include <unordered_map>
 | 
				
			||||||
#include <algorithm>
 | 
					#include <algorithm>
 | 
				
			||||||
 | 
					
 | 
				
			||||||
@@ -22,16 +20,19 @@ static void print_usage(int argc, char ** argv, const gpt_params & params) {
 | 
				
			|||||||
 | 
					
 | 
				
			||||||
    LOG_TEE("\nexample usage:\n");
 | 
					    LOG_TEE("\nexample usage:\n");
 | 
				
			||||||
    LOG_TEE("\n    %s \\\n"
 | 
					    LOG_TEE("\n    %s \\\n"
 | 
				
			||||||
            "       -m model.gguf -f some-text.txt [-o imatrix.dat] [--process-output] [--verbosity 1] \\\n"
 | 
					            "       -m model.gguf -f some-text.txt [-o imatrix.gguf] [--process-output] [--verbosity 1] \\\n"
 | 
				
			||||||
            "       [--no-ppl] [--chunk 123] [--output-frequency 10] [--save-frequency 0] \\\n"
 | 
					            "       [--no-ppl] [--chunk 123] [--output-frequency 10] [--save-frequency 0] \\\n"
 | 
				
			||||||
            "       [--in-file imatrix-prev-0.dat --in-file imatrix-prev-1.dat ...]\n" , argv[0]);
 | 
					            "       [--in-file imatrix-prev-0.gguf --in-file imatrix-prev-1.gguf ...]\n" , argv[0]);
 | 
				
			||||||
    LOG_TEE("\n");
 | 
					    LOG_TEE("\n");
 | 
				
			||||||
}
 | 
					}
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					static const char * const LLM_KV_IMATRIX_DATASET     = "imatrix.dataset";
 | 
				
			||||||
 | 
					static const char * const LLM_KV_IMATRIX_CHUNK_COUNT = "imatrix.chunk_count";
 | 
				
			||||||
 | 
					static const char * const LLM_KV_IMATRIX_CHUNK_SIZE  = "imatrix.chunk_size";
 | 
				
			||||||
 | 
					
 | 
				
			||||||
struct Stats {
 | 
					struct Stats {
 | 
				
			||||||
    std::vector<float> values;
 | 
					    std::vector<double> values;
 | 
				
			||||||
    std::vector<int> counts;
 | 
					    std::vector<int64_t> counts;
 | 
				
			||||||
    int ncall = 0;
 | 
					 | 
				
			||||||
};
 | 
					};
 | 
				
			||||||
 | 
					
 | 
				
			||||||
class IMatrixCollector {
 | 
					class IMatrixCollector {
 | 
				
			||||||
@@ -39,13 +40,13 @@ public:
 | 
				
			|||||||
    IMatrixCollector() = default;
 | 
					    IMatrixCollector() = default;
 | 
				
			||||||
    void set_params(gpt_params params) { m_params = std::move(params); }
 | 
					    void set_params(gpt_params params) { m_params = std::move(params); }
 | 
				
			||||||
    bool collect_imatrix(struct ggml_tensor * t, bool ask, void * user_data);
 | 
					    bool collect_imatrix(struct ggml_tensor * t, bool ask, void * user_data);
 | 
				
			||||||
    void save_imatrix(int ncall = -1) const;
 | 
					    void save_imatrix(int32_t n_chunk = -1) const;
 | 
				
			||||||
    bool load_imatrix(const char * file_name);
 | 
					    bool load_imatrix(const char * file_name);
 | 
				
			||||||
private:
 | 
					private:
 | 
				
			||||||
    std::unordered_map<std::string, Stats> m_stats;
 | 
					    std::unordered_map<std::string, Stats> m_stats;
 | 
				
			||||||
    gpt_params                             m_params;
 | 
					    gpt_params                             m_params;
 | 
				
			||||||
    std::mutex                             m_mutex;
 | 
					    std::mutex                             m_mutex;
 | 
				
			||||||
    int                                    m_last_call = 0;
 | 
					    int32_t                                m_last_chunk = 0;
 | 
				
			||||||
    std::vector<float>                     m_src1_data;
 | 
					    std::vector<float>                     m_src1_data;
 | 
				
			||||||
    std::vector<char>                      m_ids; // the expert ids from ggml_mul_mat_id
 | 
					    std::vector<char>                      m_ids; // the expert ids from ggml_mul_mat_id
 | 
				
			||||||
};
 | 
					};
 | 
				
			||||||
@@ -119,18 +120,24 @@ bool IMatrixCollector::collect_imatrix(struct ggml_tensor * t, bool ask, void *
 | 
				
			|||||||
 | 
					
 | 
				
			||||||
        auto & e = m_stats[wname];
 | 
					        auto & e = m_stats[wname];
 | 
				
			||||||
 | 
					
 | 
				
			||||||
        ++e.ncall;
 | 
					        if (e.counts.size() == 1 && n_as > 1) {
 | 
				
			||||||
 | 
					            // broadcast, when loading an old imatrix
 | 
				
			||||||
 | 
					            e.counts.resize(n_as, e.counts[0]);
 | 
				
			||||||
 | 
					        }
 | 
				
			||||||
        if (e.values.empty()) {
 | 
					        if (e.values.empty()) {
 | 
				
			||||||
            e.values.resize(src1->ne[0]*n_as, 0);
 | 
					            e.values.resize(src1->ne[0]*n_as, 0);
 | 
				
			||||||
            e.counts.resize(src1->ne[0]*n_as, 0);
 | 
					            e.counts.resize(n_as, 0);
 | 
				
			||||||
        }
 | 
					        }
 | 
				
			||||||
        else if (e.values.size() != (size_t)src1->ne[0]*n_as) {
 | 
					        else if (e.values.size() != (size_t)src1->ne[0]*n_as) {
 | 
				
			||||||
            fprintf(stderr, "Oops: inconsistent size for %s (%d vs %d)\n", wname.c_str(), (int)e.values.size(), (int)src1->ne[0]*n_as);
 | 
					            fprintf(stderr, "Oops: inconsistent size for %s (%d vs %d)\n", wname.c_str(), (int)e.values.size(), (int)src1->ne[0]*n_as);
 | 
				
			||||||
            exit(1); //GGML_ABORT("fatal error");
 | 
					            exit(1); //GGML_ABORT("fatal error");
 | 
				
			||||||
        }
 | 
					        }
 | 
				
			||||||
 | 
					        else if (e.counts.size() != (size_t)n_as) {
 | 
				
			||||||
 | 
					            fprintf(stderr, "Oops: inconsistent expert count for %s (%d vs %d)\n", wname.c_str(), (int)e.counts.size(), (int)n_as);
 | 
				
			||||||
 | 
					            exit(1); //GGML_ABORT("fatal error");
 | 
				
			||||||
 | 
					        }
 | 
				
			||||||
        if (m_params.verbosity > 1) {
 | 
					        if (m_params.verbosity > 1) {
 | 
				
			||||||
            printf("%s[%d]: %32s, %s, %5d x %5d, %d\n", __func__, m_last_call, wname.c_str(), ggml_op_name(t->op), (int)src1->ne[0], (int)src1->ne[2], (int)src1->type);
 | 
					            printf("%s[%d]: %32s, %s, %5d x %5d, %d\n", __func__, m_last_chunk, wname.c_str(), ggml_op_name(t->op), (int)src1->ne[0], (int)src1->ne[2], (int)src1->type);
 | 
				
			||||||
        }
 | 
					        }
 | 
				
			||||||
        // loop over all possible experts, regardless if they are used or not in the batch
 | 
					        // loop over all possible experts, regardless if they are used or not in the batch
 | 
				
			||||||
        for (int ex = 0; ex < n_as; ++ex) {
 | 
					        for (int ex = 0; ex < n_as; ++ex) {
 | 
				
			||||||
@@ -148,23 +155,26 @@ bool IMatrixCollector::collect_imatrix(struct ggml_tensor * t, bool ask, void *
 | 
				
			|||||||
                    const int64_t i12 = row;
 | 
					                    const int64_t i12 = row;
 | 
				
			||||||
                    const float * x = (const float *)((const char *)data + i11*src1->nb[1] + i12*src1->nb[2]);
 | 
					                    const float * x = (const float *)((const char *)data + i11*src1->nb[1] + i12*src1->nb[2]);
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					                    e.counts[ex]++;
 | 
				
			||||||
 | 
					
 | 
				
			||||||
                    for (int j = 0; j < (int)src1->ne[0]; ++j) {
 | 
					                    for (int j = 0; j < (int)src1->ne[0]; ++j) {
 | 
				
			||||||
                        e.values[e_start + j] += x[j]*x[j];
 | 
					                        e.values[e_start + j] += x[j]*x[j];
 | 
				
			||||||
                        e.counts[e_start + j]++;
 | 
					                        if (!std::isfinite((float)e.values[e_start + j])) {
 | 
				
			||||||
                        if (!std::isfinite(e.values[e_start + j])) {
 | 
					                            fprintf(stderr, "%f detected in %s\n", (float)e.values[e_start + j], wname.c_str());
 | 
				
			||||||
                            fprintf(stderr, "%f detected in %s\n", e.values[e_start + j], wname.c_str());
 | 
					 | 
				
			||||||
                            exit(1);
 | 
					                            exit(1);
 | 
				
			||||||
                        }
 | 
					                        }
 | 
				
			||||||
                    }
 | 
					                    }
 | 
				
			||||||
                }
 | 
					                }
 | 
				
			||||||
            }
 | 
					            }
 | 
				
			||||||
            if (e.ncall > m_last_call) {
 | 
					            const int32_t n_chunk = e.counts[ex] / (m_params.n_ctx / m_params.n_parallel);
 | 
				
			||||||
                m_last_call = e.ncall;
 | 
					            if (n_chunk > m_last_chunk) {
 | 
				
			||||||
                if (m_last_call % m_params.n_out_freq == 0) {
 | 
					                const int32_t chunk_step = n_chunk - m_last_chunk;
 | 
				
			||||||
 | 
					                m_last_chunk = n_chunk;
 | 
				
			||||||
 | 
					                if ((m_last_chunk % m_params.n_out_freq) / chunk_step == 0) {
 | 
				
			||||||
                    save_imatrix();
 | 
					                    save_imatrix();
 | 
				
			||||||
                }
 | 
					                }
 | 
				
			||||||
                if (m_params.n_save_freq > 0 && m_last_call%m_params.n_save_freq == 0) {
 | 
					                if (m_params.n_save_freq > 0 && (m_last_chunk % m_params.n_save_freq) / chunk_step == 0) {
 | 
				
			||||||
                    save_imatrix(m_last_call);
 | 
					                    save_imatrix(m_last_chunk);
 | 
				
			||||||
                }
 | 
					                }
 | 
				
			||||||
            }
 | 
					            }
 | 
				
			||||||
        }
 | 
					        }
 | 
				
			||||||
@@ -172,34 +182,40 @@ bool IMatrixCollector::collect_imatrix(struct ggml_tensor * t, bool ask, void *
 | 
				
			|||||||
        auto & e = m_stats[wname];
 | 
					        auto & e = m_stats[wname];
 | 
				
			||||||
        if (e.values.empty()) {
 | 
					        if (e.values.empty()) {
 | 
				
			||||||
            e.values.resize(src1->ne[0], 0);
 | 
					            e.values.resize(src1->ne[0], 0);
 | 
				
			||||||
            e.counts.resize(src1->ne[0], 0);
 | 
					            e.counts.resize(1, 0);
 | 
				
			||||||
        }
 | 
					        }
 | 
				
			||||||
        else if (e.values.size() != (size_t)src1->ne[0]) {
 | 
					        else if (e.values.size() != (size_t)src1->ne[0]) {
 | 
				
			||||||
            fprintf(stderr, "Oops: inconsistent size for %s (%d vs %d)\n", wname.c_str(), (int)e.values.size(), (int)src1->ne[0]);
 | 
					            fprintf(stderr, "Oops: inconsistent size for %s (%d vs %d)\n", wname.c_str(), (int)e.values.size(), (int)src1->ne[0]);
 | 
				
			||||||
            exit(1); //GGML_ABORT("fatal error");
 | 
					            exit(1); //GGML_ABORT("fatal error");
 | 
				
			||||||
        }
 | 
					        }
 | 
				
			||||||
        ++e.ncall;
 | 
					        else if (e.counts.size() != 1) {
 | 
				
			||||||
        if (m_params.verbosity > 1) {
 | 
					            fprintf(stderr, "Oops: inconsistent expert count for %s (%d vs %d)\n", wname.c_str(), (int)e.counts.size(), 1);
 | 
				
			||||||
            printf("%s[%d]: %32s, %s, %5d x %5d, %d\n", __func__, m_last_call, wname.c_str(), ggml_op_name(t->op), (int)src1->ne[0], (int)src1->ne[1], (int)src1->type);
 | 
					            exit(1); //GGML_ABORT("fatal error");
 | 
				
			||||||
        }
 | 
					        }
 | 
				
			||||||
 | 
					        if (m_params.verbosity > 1) {
 | 
				
			||||||
 | 
					            printf("%s[%d]: %32s, %s, %5d x %5d, %d\n", __func__, m_last_chunk, wname.c_str(), ggml_op_name(t->op), (int)src1->ne[0], (int)src1->ne[1], (int)src1->type);
 | 
				
			||||||
 | 
					        }
 | 
				
			||||||
 | 
					        // TODO: higher dimensions
 | 
				
			||||||
        for (int row = 0; row < (int)src1->ne[1]; ++row) {
 | 
					        for (int row = 0; row < (int)src1->ne[1]; ++row) {
 | 
				
			||||||
            const float * x = data + row * src1->ne[0];
 | 
					            const float * x = data + row * src1->ne[0];
 | 
				
			||||||
 | 
					            e.counts[0]++;
 | 
				
			||||||
            for (int j = 0; j < (int)src1->ne[0]; ++j) {
 | 
					            for (int j = 0; j < (int)src1->ne[0]; ++j) {
 | 
				
			||||||
                e.values[j] += x[j]*x[j];
 | 
					                e.values[j] += x[j]*x[j];
 | 
				
			||||||
                e.counts[j]++;
 | 
					                if (!std::isfinite((float)e.values[j])) {
 | 
				
			||||||
                if (!std::isfinite(e.values[j])) {
 | 
					                    fprintf(stderr, "%f detected in %s\n", (float)e.values[j], wname.c_str());
 | 
				
			||||||
                    fprintf(stderr, "%f detected in %s\n", e.values[j], wname.c_str());
 | 
					 | 
				
			||||||
                    exit(1);
 | 
					                    exit(1);
 | 
				
			||||||
                }
 | 
					                }
 | 
				
			||||||
            }
 | 
					            }
 | 
				
			||||||
        }
 | 
					        }
 | 
				
			||||||
        if (e.ncall > m_last_call) {
 | 
					        const int32_t n_chunk = e.counts[0] / (m_params.n_ctx / m_params.n_parallel);
 | 
				
			||||||
            m_last_call = e.ncall;
 | 
					        if (n_chunk > m_last_chunk) {
 | 
				
			||||||
            if (m_last_call % m_params.n_out_freq == 0) {
 | 
					            const int32_t chunk_step = n_chunk - m_last_chunk;
 | 
				
			||||||
 | 
					            m_last_chunk = n_chunk;
 | 
				
			||||||
 | 
					            if ((m_last_chunk % m_params.n_out_freq) / chunk_step == 0) {
 | 
				
			||||||
                save_imatrix();
 | 
					                save_imatrix();
 | 
				
			||||||
            }
 | 
					            }
 | 
				
			||||||
            if (m_params.n_save_freq > 0 && m_last_call%m_params.n_save_freq == 0) {
 | 
					            if (m_params.n_save_freq > 0 && (m_last_chunk % m_params.n_save_freq) / chunk_step == 0) {
 | 
				
			||||||
                save_imatrix(m_last_call);
 | 
					                save_imatrix(m_last_chunk);
 | 
				
			||||||
            }
 | 
					            }
 | 
				
			||||||
        }
 | 
					        }
 | 
				
			||||||
    }
 | 
					    }
 | 
				
			||||||
@@ -207,15 +223,15 @@ bool IMatrixCollector::collect_imatrix(struct ggml_tensor * t, bool ask, void *
 | 
				
			|||||||
    return true;
 | 
					    return true;
 | 
				
			||||||
}
 | 
					}
 | 
				
			||||||
 | 
					
 | 
				
			||||||
void IMatrixCollector::save_imatrix(int ncall) const {
 | 
					void IMatrixCollector::save_imatrix(int32_t n_chunk) const {
 | 
				
			||||||
    auto fname = m_params.out_file;
 | 
					    auto fname = m_params.out_file;
 | 
				
			||||||
    if (fname.empty()) {
 | 
					    if (fname.empty()) {
 | 
				
			||||||
        fname = "imatrix.dat";
 | 
					        fname = "imatrix.gguf";
 | 
				
			||||||
    }
 | 
					    }
 | 
				
			||||||
 | 
					
 | 
				
			||||||
    if (ncall > 0) {
 | 
					    if (n_chunk > 0) {
 | 
				
			||||||
        fname += ".at_";
 | 
					        fname += ".at_";
 | 
				
			||||||
        fname += std::to_string(ncall);
 | 
					        fname += std::to_string(n_chunk);
 | 
				
			||||||
    }
 | 
					    }
 | 
				
			||||||
 | 
					
 | 
				
			||||||
    // avoid writing imatrix entries that do not have full data
 | 
					    // avoid writing imatrix entries that do not have full data
 | 
				
			||||||
@@ -223,6 +239,7 @@ void IMatrixCollector::save_imatrix(int ncall) const {
 | 
				
			|||||||
 | 
					
 | 
				
			||||||
    int n_entries = 0;
 | 
					    int n_entries = 0;
 | 
				
			||||||
    std::vector<std::string> to_store;
 | 
					    std::vector<std::string> to_store;
 | 
				
			||||||
 | 
					    size_t data_size = 0;
 | 
				
			||||||
 | 
					
 | 
				
			||||||
    bool is_first = true; // for printing
 | 
					    bool is_first = true; // for printing
 | 
				
			||||||
    for (const auto & kv : m_stats) {
 | 
					    for (const auto & kv : m_stats) {
 | 
				
			||||||
@@ -256,100 +273,132 @@ void IMatrixCollector::save_imatrix(int ncall) const {
 | 
				
			|||||||
 | 
					
 | 
				
			||||||
        n_entries++;
 | 
					        n_entries++;
 | 
				
			||||||
        to_store.push_back(kv.first);
 | 
					        to_store.push_back(kv.first);
 | 
				
			||||||
 | 
					        data_size += GGML_PAD(ggml_tensor_overhead() + sizeof(float) * kv.second.values.size(), GGML_MEM_ALIGN);
 | 
				
			||||||
 | 
					        data_size += GGML_PAD(ggml_tensor_overhead() + sizeof(float) * kv.second.counts.size(), GGML_MEM_ALIGN);
 | 
				
			||||||
    }
 | 
					    }
 | 
				
			||||||
 | 
					
 | 
				
			||||||
    if (to_store.size() < m_stats.size()) {
 | 
					    if (to_store.size() < m_stats.size()) {
 | 
				
			||||||
        fprintf(stderr, "%s: warning: storing only %zu out of %zu entries\n", __func__, to_store.size(), m_stats.size());
 | 
					        fprintf(stderr, "%s: warning: storing only %zu out of %zu entries\n", __func__, to_store.size(), m_stats.size());
 | 
				
			||||||
    }
 | 
					    }
 | 
				
			||||||
 | 
					
 | 
				
			||||||
    std::ofstream out(fname, std::ios::binary);
 | 
					    struct ggml_init_params params = {
 | 
				
			||||||
    out.write((const char *) &n_entries, sizeof(n_entries));
 | 
					        .mem_size   = data_size,
 | 
				
			||||||
 | 
					        .mem_buffer = NULL,
 | 
				
			||||||
 | 
					        .no_alloc   = false,
 | 
				
			||||||
 | 
					    };
 | 
				
			||||||
 | 
					    struct ggml_context * ctx = ggml_init(params);
 | 
				
			||||||
 | 
					    struct gguf_context * ctx_gguf = gguf_init_empty();
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					    gguf_set_val_str(ctx_gguf, "general.type", "imatrix");
 | 
				
			||||||
 | 
					    // Write the input filename to later on specify it in quantize
 | 
				
			||||||
 | 
					    gguf_set_val_str(ctx_gguf, LLM_KV_IMATRIX_DATASET, m_params.prompt_file.c_str());
 | 
				
			||||||
 | 
					    // Write the number of chunks the matrix was computed with
 | 
				
			||||||
 | 
					    gguf_set_val_u32(ctx_gguf, LLM_KV_IMATRIX_CHUNK_COUNT, m_last_chunk);
 | 
				
			||||||
 | 
					    gguf_set_val_u32(ctx_gguf, LLM_KV_IMATRIX_CHUNK_SIZE, m_params.n_ctx / m_params.n_parallel);
 | 
				
			||||||
 | 
					
 | 
				
			||||||
    for (const auto & name : to_store) {
 | 
					    for (const auto & name : to_store) {
 | 
				
			||||||
        const auto & stat = m_stats.at(name);
 | 
					        const auto & stat = m_stats.at(name);
 | 
				
			||||||
        int len = name.size();
 | 
					        const int32_t nval = (int32_t) stat.values.size();
 | 
				
			||||||
        out.write((const char *) &len, sizeof(len));
 | 
					        const int32_t nmat = (int32_t) stat.counts.size();
 | 
				
			||||||
        out.write(name.c_str(), len);
 | 
					 | 
				
			||||||
        out.write((const char *) &stat.ncall, sizeof(stat.ncall));
 | 
					 | 
				
			||||||
        int nval = stat.values.size();
 | 
					 | 
				
			||||||
        out.write((const char *) &nval, sizeof(nval));
 | 
					 | 
				
			||||||
        if (nval > 0) {
 | 
					        if (nval > 0) {
 | 
				
			||||||
            std::vector<float> tmp(nval);
 | 
					            struct ggml_tensor * sums = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, nval / nmat, nmat);
 | 
				
			||||||
            for (int i = 0; i < nval; i++) {
 | 
					            struct ggml_tensor * counts = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, 1, nmat);
 | 
				
			||||||
                tmp[i] = (stat.values[i] / static_cast<float>(stat.counts[i])) * static_cast<float>(stat.ncall);
 | 
					            ggml_set_name(sums, (name + ".sums").c_str());
 | 
				
			||||||
 | 
					            ggml_set_name(counts, (name + ".counts").c_str());
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					            for (int32_t j = 0; j < nval; ++j) {
 | 
				
			||||||
 | 
					                ((float *) sums->data)[j] = (float) stat.values[j];
 | 
				
			||||||
            }
 | 
					            }
 | 
				
			||||||
            out.write((const char*)tmp.data(), nval*sizeof(float));
 | 
					            for (int32_t j = 0; j < nmat; ++j) {
 | 
				
			||||||
 | 
					                ((float *) counts->data)[j] = (float) stat.counts[j];
 | 
				
			||||||
 | 
					            }
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					            gguf_add_tensor(ctx_gguf, sums);
 | 
				
			||||||
 | 
					            gguf_add_tensor(ctx_gguf, counts);
 | 
				
			||||||
        }
 | 
					        }
 | 
				
			||||||
    }
 | 
					    }
 | 
				
			||||||
 | 
					
 | 
				
			||||||
    // Write the number of call the matrix was computed with
 | 
					    gguf_write_to_file(ctx_gguf, fname.c_str(), false);
 | 
				
			||||||
    out.write((const char *) &m_last_call, sizeof(m_last_call));
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    // Write the input filename at the end of the file to later on specify it in quantize
 | 
					 | 
				
			||||||
    {
 | 
					 | 
				
			||||||
        int len = m_params.prompt_file.size();
 | 
					 | 
				
			||||||
        out.write((const char *) &len, sizeof(len));
 | 
					 | 
				
			||||||
        out.write(m_params.prompt_file.c_str(), len);
 | 
					 | 
				
			||||||
    }
 | 
					 | 
				
			||||||
 | 
					
 | 
				
			||||||
    if (m_params.verbosity > 0) {
 | 
					    if (m_params.verbosity > 0) {
 | 
				
			||||||
        fprintf(stderr, "\n%s: stored collected data after %d chunks in %s\n", __func__, m_last_call, fname.c_str());
 | 
					        fprintf(stderr, "\n%s: stored collected data after %d chunks in %s\n", __func__, m_last_chunk, fname.c_str());
 | 
				
			||||||
    }
 | 
					    }
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					    gguf_free(ctx_gguf);
 | 
				
			||||||
 | 
					    ggml_free(ctx);
 | 
				
			||||||
}
 | 
					}
 | 
				
			||||||
 | 
					
 | 
				
			||||||
bool IMatrixCollector::load_imatrix(const char * fname) {
 | 
					bool IMatrixCollector::load_imatrix(const char * file_name) {
 | 
				
			||||||
    std::ifstream in(fname, std::ios::binary);
 | 
					    struct ggml_context * ctx = nullptr;
 | 
				
			||||||
    if (!in) {
 | 
					    struct gguf_init_params meta_gguf_params = {
 | 
				
			||||||
        printf("%s: failed to open %s\n",__func__, fname);
 | 
					        /* .no_alloc = */ false, // the data is needed
 | 
				
			||||||
 | 
					        /* .ctx      = */ &ctx,
 | 
				
			||||||
 | 
					    };
 | 
				
			||||||
 | 
					    struct gguf_context * ctx_gguf = gguf_init_from_file(file_name, meta_gguf_params);
 | 
				
			||||||
 | 
					    if (!ctx_gguf) {
 | 
				
			||||||
        return false;
 | 
					        return false;
 | 
				
			||||||
    }
 | 
					    }
 | 
				
			||||||
    int n_entries;
 | 
					    const int32_t n_entries = gguf_get_n_tensors(ctx_gguf);
 | 
				
			||||||
    in.read((char*)&n_entries, sizeof(n_entries));
 | 
					    if (n_entries < 2) {
 | 
				
			||||||
    if (in.fail() || n_entries < 1) {
 | 
					        fprintf(stderr, "%s: no data in file %s\n", __func__, file_name);
 | 
				
			||||||
        printf("%s: no data in file %s\n", __func__, fname);
 | 
					        gguf_free(ctx_gguf);
 | 
				
			||||||
        return false;
 | 
					        ggml_free(ctx);
 | 
				
			||||||
    }
 | 
					 | 
				
			||||||
    for (int i = 0; i < n_entries; ++i) {
 | 
					 | 
				
			||||||
        int len; in.read((char *)&len, sizeof(len));
 | 
					 | 
				
			||||||
        std::vector<char> name_as_vec(len+1);
 | 
					 | 
				
			||||||
        in.read((char *)name_as_vec.data(), len);
 | 
					 | 
				
			||||||
        if (in.fail()) {
 | 
					 | 
				
			||||||
            printf("%s: failed reading name for entry %d from %s\n",__func__,i+1, fname);
 | 
					 | 
				
			||||||
            return false;
 | 
					 | 
				
			||||||
        }
 | 
					 | 
				
			||||||
        name_as_vec[len] = 0;
 | 
					 | 
				
			||||||
        std::string name{name_as_vec.data()};
 | 
					 | 
				
			||||||
        auto & e = m_stats[std::move(name)];
 | 
					 | 
				
			||||||
        int ncall;
 | 
					 | 
				
			||||||
        in.read((char*)&ncall, sizeof(ncall));
 | 
					 | 
				
			||||||
        int nval;
 | 
					 | 
				
			||||||
        in.read((char *)&nval, sizeof(nval));
 | 
					 | 
				
			||||||
        if (in.fail() || nval < 1) {
 | 
					 | 
				
			||||||
            printf("%s: failed reading number of values for entry %d\n",__func__,i);
 | 
					 | 
				
			||||||
            m_stats = {};
 | 
					 | 
				
			||||||
        return false;
 | 
					        return false;
 | 
				
			||||||
    }
 | 
					    }
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					    const std::string sums_suffix{".sums"};
 | 
				
			||||||
 | 
					    const std::string counts_suffix{".counts"};
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					    // TODO: allow loading from mis-ordered imatrix files
 | 
				
			||||||
 | 
					    for (int32_t i = 0; i < n_entries - 1; i += 2) {
 | 
				
			||||||
 | 
					        std::string sums_name{gguf_get_tensor_name(ctx_gguf, i + 0)};
 | 
				
			||||||
 | 
					        std::string counts_name{gguf_get_tensor_name(ctx_gguf, i + 1)};
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					        if (sums_name.size() < sums_suffix.size() ||
 | 
				
			||||||
 | 
					            counts_name.size() < counts_suffix.size() ||
 | 
				
			||||||
 | 
					            !std::equal(sums_name.begin(), sums_name.end() - sums_suffix.size(), counts_name.begin()) ||
 | 
				
			||||||
 | 
					            !std::equal(sums_suffix.rbegin(), sums_suffix.rend(), sums_name.rbegin()) ||
 | 
				
			||||||
 | 
					            !std::equal(counts_suffix.rbegin(), counts_suffix.rend(), counts_name.rbegin())) {
 | 
				
			||||||
 | 
					            fprintf(stderr, "%s: mismatched sums and counts for entry %d\n", __func__, i / 2);
 | 
				
			||||||
 | 
					            gguf_free(ctx_gguf);
 | 
				
			||||||
 | 
					            ggml_free(ctx);
 | 
				
			||||||
 | 
					            return false;
 | 
				
			||||||
 | 
					        }
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					        struct ggml_tensor * sums = ggml_get_tensor(ctx, sums_name.c_str());
 | 
				
			||||||
 | 
					        struct ggml_tensor * counts = ggml_get_tensor(ctx, counts_name.c_str());
 | 
				
			||||||
 | 
					        if (!sums || !counts) {
 | 
				
			||||||
 | 
					            fprintf(stderr, "%s: failed reading data for entry %d\n", __func__, i / 2);
 | 
				
			||||||
 | 
					            gguf_free(ctx_gguf);
 | 
				
			||||||
 | 
					            ggml_free(ctx);
 | 
				
			||||||
 | 
					            return false;
 | 
				
			||||||
 | 
					        }
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					        std::string name = sums_name.substr(0, sums_name.size() - sums_suffix.size());
 | 
				
			||||||
 | 
					        auto & e = m_stats[name];
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					        int32_t nval = ggml_nelements(sums);
 | 
				
			||||||
        if (e.values.empty()) {
 | 
					        if (e.values.empty()) {
 | 
				
			||||||
            e.values.resize(nval, 0);
 | 
					            e.values.resize(nval, 0);
 | 
				
			||||||
            e.counts.resize(nval, 0);
 | 
					        }
 | 
				
			||||||
 | 
					        int32_t ncounts = ggml_nelements(counts);
 | 
				
			||||||
 | 
					        if (e.counts.empty()) {
 | 
				
			||||||
 | 
					            e.counts.resize(ncounts, 0);
 | 
				
			||||||
 | 
					        } else if (e.counts.size() == 1 && ncounts > 1) {
 | 
				
			||||||
 | 
					            // broadcast, when loading an old imatrix
 | 
				
			||||||
 | 
					            e.counts.resize(ncounts, e.counts[0]);
 | 
				
			||||||
        }
 | 
					        }
 | 
				
			||||||
 | 
					
 | 
				
			||||||
        std::vector<float> tmp(nval);
 | 
					        // Recreate the state as expected by save_imatrix()
 | 
				
			||||||
        in.read((char*)tmp.data(), nval*sizeof(float));
 | 
					        for (int32_t j = 0; j < nval; j++) {
 | 
				
			||||||
        if (in.fail()) {
 | 
					            e.values[j] += ((const float *) sums->data)[j];
 | 
				
			||||||
            printf("%s: failed reading data for entry %d\n",__func__,i);
 | 
					 | 
				
			||||||
            m_stats = {};
 | 
					 | 
				
			||||||
            return false;
 | 
					 | 
				
			||||||
        }
 | 
					        }
 | 
				
			||||||
 | 
					        for (int32_t j = 0; j < ncounts; j++) {
 | 
				
			||||||
        // Recreate the state as expected by save_imatrix(), and corerct for weighted sum.
 | 
					            e.counts[j] += std::lround(((const float *) counts->data)[j]);
 | 
				
			||||||
        for (int i = 0; i < nval; i++) {
 | 
					 | 
				
			||||||
            e.values[i] += tmp[i];
 | 
					 | 
				
			||||||
            e.counts[i] += ncall;
 | 
					 | 
				
			||||||
        }
 | 
					        }
 | 
				
			||||||
        e.ncall += ncall;
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    }
 | 
					    }
 | 
				
			||||||
 | 
					    gguf_free(ctx_gguf);
 | 
				
			||||||
 | 
					    ggml_free(ctx);
 | 
				
			||||||
    return true;
 | 
					    return true;
 | 
				
			||||||
}
 | 
					}
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 
 | 
				
			|||||||
@@ -6,8 +6,6 @@
 | 
				
			|||||||
#include <vector>
 | 
					#include <vector>
 | 
				
			||||||
#include <string>
 | 
					#include <string>
 | 
				
			||||||
#include <unordered_map>
 | 
					#include <unordered_map>
 | 
				
			||||||
#include <fstream>
 | 
					 | 
				
			||||||
#include <cmath>
 | 
					 | 
				
			||||||
 | 
					
 | 
				
			||||||
struct quant_option {
 | 
					struct quant_option {
 | 
				
			||||||
    std::string name;
 | 
					    std::string name;
 | 
				
			||||||
@@ -61,6 +59,11 @@ static const char * const LLM_KV_QUANTIZE_IMATRIX_DATASET    = "quantize.imatrix
 | 
				
			|||||||
static const char * const LLM_KV_QUANTIZE_IMATRIX_N_ENTRIES  = "quantize.imatrix.entries_count";
 | 
					static const char * const LLM_KV_QUANTIZE_IMATRIX_N_ENTRIES  = "quantize.imatrix.entries_count";
 | 
				
			||||||
static const char * const LLM_KV_QUANTIZE_IMATRIX_N_CHUNKS   = "quantize.imatrix.chunks_count";
 | 
					static const char * const LLM_KV_QUANTIZE_IMATRIX_N_CHUNKS   = "quantize.imatrix.chunks_count";
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					// TODO: share with imatrix.cpp
 | 
				
			||||||
 | 
					static const char * const LLM_KV_IMATRIX_DATASET     = "imatrix.dataset";
 | 
				
			||||||
 | 
					static const char * const LLM_KV_IMATRIX_CHUNK_COUNT = "imatrix.chunk_count";
 | 
				
			||||||
 | 
					static const char * const LLM_KV_IMATRIX_CHUNK_SIZE  = "imatrix.chunk_size";
 | 
				
			||||||
 | 
					
 | 
				
			||||||
static bool try_parse_ftype(const std::string & ftype_str_in, llama_ftype & ftype, std::string & ftype_str_out) {
 | 
					static bool try_parse_ftype(const std::string & ftype_str_in, llama_ftype & ftype, std::string & ftype_str_out) {
 | 
				
			||||||
    std::string ftype_str;
 | 
					    std::string ftype_str;
 | 
				
			||||||
 | 
					
 | 
				
			||||||
@@ -121,66 +124,92 @@ static void usage(const char * executable) {
 | 
				
			|||||||
}
 | 
					}
 | 
				
			||||||
 | 
					
 | 
				
			||||||
static int load_imatrix(const std::string & imatrix_file, std::string & imatrix_dataset, std::unordered_map<std::string, std::vector<float>> & imatrix_data) {
 | 
					static int load_imatrix(const std::string & imatrix_file, std::string & imatrix_dataset, std::unordered_map<std::string, std::vector<float>> & imatrix_data) {
 | 
				
			||||||
    std::ifstream in(imatrix_file.c_str(), std::ios::binary);
 | 
					
 | 
				
			||||||
    if (!in) {
 | 
					    struct ggml_context * ctx = nullptr;
 | 
				
			||||||
        printf("%s: failed to open %s\n",__func__, imatrix_file.c_str());
 | 
					    struct gguf_init_params meta_gguf_params = {
 | 
				
			||||||
 | 
					        /* .no_alloc = */ false, // the data is needed
 | 
				
			||||||
 | 
					        /* .ctx      = */ &ctx,
 | 
				
			||||||
 | 
					    };
 | 
				
			||||||
 | 
					    struct gguf_context * ctx_gguf = gguf_init_from_file(imatrix_file.c_str(), meta_gguf_params);
 | 
				
			||||||
 | 
					    if (!ctx_gguf) {
 | 
				
			||||||
        exit(1);
 | 
					        exit(1);
 | 
				
			||||||
    }
 | 
					    }
 | 
				
			||||||
    int n_entries;
 | 
					    const int32_t n_entries = gguf_get_n_tensors(ctx_gguf);
 | 
				
			||||||
    in.read((char *)&n_entries, sizeof(n_entries));
 | 
					    if (n_entries < 2) {
 | 
				
			||||||
    if (in.fail() || n_entries < 1) {
 | 
					        fprintf(stderr, "%s: no data in file %s\n", __func__, imatrix_file.c_str());
 | 
				
			||||||
        printf("%s: no data in file %s\n", __func__, imatrix_file.c_str());
 | 
					        gguf_free(ctx_gguf);
 | 
				
			||||||
 | 
					        ggml_free(ctx);
 | 
				
			||||||
        exit(1);
 | 
					        exit(1);
 | 
				
			||||||
    }
 | 
					    }
 | 
				
			||||||
    for (int i = 0; i < n_entries; ++i) {
 | 
					
 | 
				
			||||||
        int len; in.read((char *)&len, sizeof(len));
 | 
					    const int dataset_idx     = gguf_find_key(ctx_gguf, LLM_KV_IMATRIX_DATASET);
 | 
				
			||||||
        std::vector<char> name_as_vec(len+1);
 | 
					    const int chunk_count_idx = gguf_find_key(ctx_gguf, LLM_KV_IMATRIX_CHUNK_COUNT);
 | 
				
			||||||
        in.read((char *)name_as_vec.data(), len);
 | 
					    const int chunk_size_idx  = gguf_find_key(ctx_gguf, LLM_KV_IMATRIX_CHUNK_SIZE);
 | 
				
			||||||
        if (in.fail()) {
 | 
					    if (dataset_idx < 0 || chunk_count_idx < 0 || chunk_size_idx < 0) {
 | 
				
			||||||
            printf("%s: failed reading name for entry %d from %s\n", __func__, i+1, imatrix_file.c_str());
 | 
					        fprintf(stderr, "%s: missing imatrix metadata in file %s\n", __func__, imatrix_file.c_str());
 | 
				
			||||||
 | 
					        gguf_free(ctx_gguf);
 | 
				
			||||||
 | 
					        ggml_free(ctx);
 | 
				
			||||||
        exit(1);
 | 
					        exit(1);
 | 
				
			||||||
    }
 | 
					    }
 | 
				
			||||||
        name_as_vec[len] = 0;
 | 
					
 | 
				
			||||||
        std::string name{name_as_vec.data()};
 | 
					    const uint32_t chunk_size = gguf_get_val_u32(ctx_gguf, chunk_size_idx);
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					    const std::string sums_suffix{".sums"};
 | 
				
			||||||
 | 
					    const std::string counts_suffix{".counts"};
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					    // TODO: allow loading from mis-ordered imatrix files
 | 
				
			||||||
 | 
					    for (int32_t i = 0; i < n_entries - 1; i += 2) {
 | 
				
			||||||
 | 
					        std::string sums_name{gguf_get_tensor_name(ctx_gguf, i + 0)};
 | 
				
			||||||
 | 
					        std::string counts_name{gguf_get_tensor_name(ctx_gguf, i + 1)};
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					        if (sums_name.size() < sums_suffix.size() ||
 | 
				
			||||||
 | 
					            counts_name.size() < counts_suffix.size() ||
 | 
				
			||||||
 | 
					            !std::equal(sums_name.begin(), sums_name.end() - sums_suffix.size(), counts_name.begin()) ||
 | 
				
			||||||
 | 
					            !std::equal(sums_suffix.rbegin(), sums_suffix.rend(), sums_name.rbegin()) ||
 | 
				
			||||||
 | 
					            !std::equal(counts_suffix.rbegin(), counts_suffix.rend(), counts_name.rbegin())) {
 | 
				
			||||||
 | 
					            fprintf(stderr, "%s: mismatched sums and counts for entry %d\n", __func__, i / 2);
 | 
				
			||||||
 | 
					            gguf_free(ctx_gguf);
 | 
				
			||||||
 | 
					            ggml_free(ctx);
 | 
				
			||||||
 | 
					            exit(1);
 | 
				
			||||||
 | 
					        }
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					        struct ggml_tensor * sums = ggml_get_tensor(ctx, sums_name.c_str());
 | 
				
			||||||
 | 
					        struct ggml_tensor * counts = ggml_get_tensor(ctx, counts_name.c_str());
 | 
				
			||||||
 | 
					        if (!sums || !counts) {
 | 
				
			||||||
 | 
					            fprintf(stderr, "%s: failed reading data for entry %d\n", __func__, i / 2);
 | 
				
			||||||
 | 
					            gguf_free(ctx_gguf);
 | 
				
			||||||
 | 
					            ggml_free(ctx);
 | 
				
			||||||
 | 
					            exit(1);
 | 
				
			||||||
 | 
					        }
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					        const int64_t ne0 = sums->ne[0];
 | 
				
			||||||
 | 
					        const int64_t ne1 = sums->ne[1];
 | 
				
			||||||
 | 
					        std::string name = sums_name.substr(0, sums_name.size() - sums_suffix.size());
 | 
				
			||||||
        auto & e = imatrix_data[name];
 | 
					        auto & e = imatrix_data[name];
 | 
				
			||||||
        int ncall;
 | 
					        e.resize(ggml_nelements(sums));
 | 
				
			||||||
        in.read((char *)&ncall, sizeof(ncall));
 | 
					        float max_count = 0.0f;
 | 
				
			||||||
        int nval;
 | 
					        for (int64_t j = 0; j < ne1; ++j) {
 | 
				
			||||||
        in.read((char *)&nval, sizeof(nval));
 | 
					            const float count = ((const float *) counts->data)[ne1];
 | 
				
			||||||
        if (in.fail() || nval < 1) {
 | 
					            for (int64_t i = 0; i < ne0; ++i) {
 | 
				
			||||||
            printf("%s: failed reading number of values for entry %d\n", __func__, i);
 | 
					                e[ne1*ne0 + ne0] = ((const float *) sums->data)[ne1*ne0 + ne0] / count;
 | 
				
			||||||
            imatrix_data = {};
 | 
					 | 
				
			||||||
            exit(1);
 | 
					 | 
				
			||||||
            }
 | 
					            }
 | 
				
			||||||
        e.resize(nval);
 | 
					            if (count > max_count) {
 | 
				
			||||||
        in.read((char *)e.data(), nval*sizeof(float));
 | 
					                max_count = count;
 | 
				
			||||||
        if (in.fail()) {
 | 
					 | 
				
			||||||
            printf("%s: failed reading data for entry %d\n", __func__, i);
 | 
					 | 
				
			||||||
            imatrix_data = {};
 | 
					 | 
				
			||||||
            exit(1);
 | 
					 | 
				
			||||||
            }
 | 
					            }
 | 
				
			||||||
        if (ncall > 0) {
 | 
					 | 
				
			||||||
            for (auto& v : e) v /= ncall;
 | 
					 | 
				
			||||||
        }
 | 
					        }
 | 
				
			||||||
 | 
					 | 
				
			||||||
        if (getenv("LLAMA_TRACE")) {
 | 
					        if (getenv("LLAMA_TRACE")) {
 | 
				
			||||||
            printf("%s: loaded data (size = %6d, ncall = %6d) for '%s'\n", __func__, int(e.size()), ncall, name.c_str());
 | 
					            printf("%s: loaded data (size = %6d, ncall = %6d) for '%s'\n", __func__, int(e.size()), int(max_count / chunk_size), name.c_str());
 | 
				
			||||||
        }
 | 
					        }
 | 
				
			||||||
    }
 | 
					    }
 | 
				
			||||||
 | 
					    gguf_free(ctx_gguf);
 | 
				
			||||||
 | 
					    ggml_free(ctx);
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					    int m_last_chunk = gguf_get_val_u32(ctx_gguf, chunk_count_idx);
 | 
				
			||||||
 | 
					    imatrix_dataset = gguf_get_val_str(ctx_gguf, dataset_idx);
 | 
				
			||||||
 | 
					
 | 
				
			||||||
    // latest imatrix version contains the dataset filename at the end of the file
 | 
					 | 
				
			||||||
    int m_last_call = 0;
 | 
					 | 
				
			||||||
    if (in.peek() != EOF) {
 | 
					 | 
				
			||||||
        in.read((char *)&m_last_call, sizeof(m_last_call));
 | 
					 | 
				
			||||||
        int dataset_len;
 | 
					 | 
				
			||||||
        in.read((char *)&dataset_len, sizeof(dataset_len));
 | 
					 | 
				
			||||||
        std::vector<char> dataset_as_vec(dataset_len);
 | 
					 | 
				
			||||||
        in.read(dataset_as_vec.data(), dataset_len);
 | 
					 | 
				
			||||||
        imatrix_dataset.assign(dataset_as_vec.begin(), dataset_as_vec.end());
 | 
					 | 
				
			||||||
    printf("%s: imatrix dataset='%s'\n", __func__, imatrix_dataset.c_str());
 | 
					    printf("%s: imatrix dataset='%s'\n", __func__, imatrix_dataset.c_str());
 | 
				
			||||||
    }
 | 
					    printf("%s: loaded %d importance matrix entries from %s computed on %d chunks\n", __func__, int(imatrix_data.size()), imatrix_file.c_str(), m_last_chunk);
 | 
				
			||||||
    printf("%s: loaded %d importance matrix entries from %s computed on %d chunks\n", __func__, int(imatrix_data.size()), imatrix_file.c_str(), m_last_call);
 | 
					    return m_last_chunk;
 | 
				
			||||||
    return m_last_call;
 | 
					 | 
				
			||||||
}
 | 
					}
 | 
				
			||||||
 | 
					
 | 
				
			||||||
static int prepare_imatrix(const std::string & imatrix_file,
 | 
					static int prepare_imatrix(const std::string & imatrix_file,
 | 
				
			||||||
 
 | 
				
			|||||||
@@ -167,6 +167,12 @@ class Keys:
 | 
				
			|||||||
        TYPE       = "adapter.type"
 | 
					        TYPE       = "adapter.type"
 | 
				
			||||||
        LORA_ALPHA = "adapter.lora.alpha"
 | 
					        LORA_ALPHA = "adapter.lora.alpha"
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					    class IMatrix:
 | 
				
			||||||
 | 
					        CHUNK_COUNT = "imatrix.chunk_count"
 | 
				
			||||||
 | 
					        CHUNK_SIZE  = "imatrix.chunk_size"
 | 
				
			||||||
 | 
					        DATASET     = "imatrix.dataset"
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					
 | 
				
			||||||
#
 | 
					#
 | 
				
			||||||
# recommended mapping of model tensor names for storage in gguf
 | 
					# recommended mapping of model tensor names for storage in gguf
 | 
				
			||||||
#
 | 
					#
 | 
				
			||||||
@@ -175,6 +181,7 @@ class Keys:
 | 
				
			|||||||
class GGUFType:
 | 
					class GGUFType:
 | 
				
			||||||
    MODEL   = "model"
 | 
					    MODEL   = "model"
 | 
				
			||||||
    ADAPTER = "adapter"
 | 
					    ADAPTER = "adapter"
 | 
				
			||||||
 | 
					    IMATRIX = "imatrix"
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					
 | 
				
			||||||
class MODEL_ARCH(IntEnum):
 | 
					class MODEL_ARCH(IntEnum):
 | 
				
			||||||
 
 | 
				
			|||||||
		Reference in New Issue
	
	Block a user