mirror of
				https://github.com/ggml-org/llama.cpp.git
				synced 2025-10-31 08:51:55 +00:00 
			
		
		
		
	[SYCL] Use batched mul_mat pathway (#5591)
* Use batched mul_mat pathway * rm extra line * Explicitly state scaled data type --------- Co-authored-by: Abhilash Majumder <30946547+abhilash1910@users.noreply.github.com>
This commit is contained in:
		
							
								
								
									
										107
									
								
								ggml-sycl.cpp
									
									
									
									
									
								
							
							
						
						
									
										107
									
								
								ggml-sycl.cpp
									
									
									
									
									
								
							| @@ -12726,6 +12726,7 @@ static void ggml_sycl_op_mul_mat(const ggml_tensor *src0, | ||||
|  | ||||
|     GGML_ASSERT(dst->backend != GGML_BACKEND_TYPE_GPU_SPLIT); | ||||
|     GGML_ASSERT(src1->backend != GGML_BACKEND_TYPE_GPU_SPLIT); | ||||
|     GGML_ASSERT(src1->type == GGML_TYPE_F32 || (src1->ne[2] == 1 && src1->ne[3] == 1)); | ||||
|  | ||||
|     GGML_ASSERT(ne12 >= ne02 && ne12 % ne02 == 0); | ||||
|  | ||||
| @@ -13269,31 +13270,23 @@ static void k_compute_batched_ptrs(const sycl::half *src0_as_f16, | ||||
|     int64_t i03 = i13 / r3; | ||||
|     int64_t i02 = i12 / r2; | ||||
|  | ||||
|     ptrs_src[0*ne23 + i12 + i13*ne12] = (const char *) src0_as_f16 + i02*nb02   + i03*nb03; | ||||
|     ptrs_src[1*ne23 + i12 + i13*ne12] = (const char *) src1_as_f16 + i12*nb12/2 + i13*nb13/2; | ||||
|     ptrs_dst[0*ne23 + i12 + i13*ne12] = (      char *)         dst + i12*nbd2   + i13*nbd3; | ||||
|     ptrs_src[0*ne23 + i12 + i13*ne12] = (const char *) src0_as_f16 + i02*nb02 + i03*nb03; | ||||
|     ptrs_src[1*ne23 + i12 + i13*ne12] = (const char *) src1_as_f16 + i12*nb12 + i13*nb13; | ||||
|     ptrs_dst[0*ne23 + i12 + i13*ne12] = (      char *)         dst + i12*nbd2 + i13*nbd3; | ||||
| } | ||||
|  | ||||
| static void ggml_sycl_mul_mat_mat_batched_sycl(const ggml_tensor *src0, | ||||
|                                                  const ggml_tensor *src1, | ||||
|                                                  ggml_tensor *dst) try { | ||||
| static void ggml_sycl_mul_mat_batched_sycl(const ggml_tensor *src0, | ||||
|                                              const ggml_tensor *src1, | ||||
|                                              ggml_tensor *dst) try { | ||||
|     GGML_ASSERT(!ggml_is_transposed(src0)); | ||||
|     GGML_ASSERT(!ggml_is_transposed(src1)); | ||||
|  | ||||
|     GGML_ASSERT(src0->backend != GGML_BACKEND_TYPE_GPU_SPLIT); | ||||
|     GGML_ASSERT(src0->type == GGML_TYPE_F16); | ||||
|     GGML_ASSERT(src1->type == GGML_TYPE_F32); | ||||
|  | ||||
|     GGML_TENSOR_LOCALS(int64_t, ne0, src0, ne); | ||||
|     GGML_TENSOR_BINARY_OP_LOCALS | ||||
|  | ||||
|     GGML_TENSOR_LOCALS(int64_t, nb0, src0, nb); | ||||
|  | ||||
|     GGML_TENSOR_LOCALS(int64_t, ne1, src1, ne); | ||||
|  | ||||
|     GGML_TENSOR_LOCALS(int64_t, nb1, src1, nb); | ||||
|  | ||||
|     const int64_t ne1 = ggml_nelements(src1); | ||||
|     const int64_t ne  = ggml_nelements(dst); | ||||
|     const int64_t ne_dst  = ggml_nelements(dst); | ||||
|  | ||||
|     SYCL_CHECK(ggml_sycl_set_device(g_main_device)); | ||||
|     dpct::queue_ptr main_stream = g_syclStreams[g_main_device_index][0]; | ||||
| @@ -13312,11 +13305,16 @@ static void ggml_sycl_mul_mat_mat_batched_sycl(const ggml_tensor *src0, | ||||
|     float * dst_ddf = (float *) dst_extra->data_device[g_main_device_index]; | ||||
|  | ||||
|     // convert src1 to fp16 | ||||
|     const to_fp16_sycl_t to_fp16_sycl = ggml_get_to_fp16_sycl(src1->type); | ||||
|     GGML_ASSERT(to_fp16_sycl != nullptr); | ||||
|  | ||||
|     sycl_pool_alloc<sycl::half> src1_as_f16(ne1); | ||||
|     to_fp16_sycl(src1_ddf, src1_as_f16.get(), ne1, main_stream); | ||||
|     sycl_pool_alloc<sycl::half> src1_f16_alloc; | ||||
|     if (src1->type != GGML_TYPE_F16) { | ||||
|       const to_fp16_sycl_t to_fp16_sycl = ggml_get_to_fp16_sycl(src1->type); | ||||
|       const int64_t ne_src1 = ggml_nelements(src1); | ||||
|       src1_f16_alloc.alloc(ne_src1); | ||||
|       GGML_ASSERT(to_fp16_sycl != nullptr); | ||||
|       to_fp16_sycl(src1_ddf, src1_f16_alloc.get(), ne_src1, main_stream); | ||||
|     } | ||||
|     sycl::half *src1_f16 = src1->type == GGML_TYPE_F16 ? (sycl::half *)src1_ddf | ||||
|                                                        : src1_f16_alloc.get(); | ||||
|  | ||||
|     sycl_pool_alloc<sycl::half> dst_f16; | ||||
|     char * dst_t; | ||||
| @@ -13337,20 +13335,12 @@ static void ggml_sycl_mul_mat_mat_batched_sycl(const ggml_tensor *src0, | ||||
|     const void * alpha = &alpha_f16; | ||||
|     const void * beta  = &beta_f16; | ||||
|  | ||||
|     if (dst->op_params[0] == GGML_PREC_DEFAULT) { | ||||
|         dst_t = (char *) dst_f16.alloc(ne); | ||||
|     // TODO: Renable (dst->op_params[0] =! GGML_PREC_DEFAULT) pathway | ||||
|     // once oneMKL open source supports half, half, float, float: datatypes | ||||
|     dst_t = (char *) dst_f16.alloc(ne_dst); | ||||
|  | ||||
|         nbd2 /= sizeof(float) / sizeof(sycl::half); | ||||
|         nbd3 /= sizeof(float) / sizeof(sycl::half); | ||||
|     } else { | ||||
|         dst_t = (char *) dst_ddf; | ||||
|  | ||||
|         cu_compute_type = dpct::library_data_t::real_float; | ||||
|         cu_data_type = dpct::library_data_t::real_float; | ||||
|  | ||||
|         alpha = &alpha_f32; | ||||
|         beta  = &beta_f32; | ||||
|     } | ||||
|     nbd2 /= sizeof(float) / sizeof(sycl::half); | ||||
|     nbd3 /= sizeof(float) / sizeof(sycl::half); | ||||
|  | ||||
|     GGML_ASSERT(ne12 % ne02 == 0); | ||||
|     GGML_ASSERT(ne13 % ne03 == 0); | ||||
| @@ -13386,10 +13376,10 @@ static void ggml_sycl_mul_mat_mat_batched_sycl(const ggml_tensor *src0, | ||||
|             *g_sycl_handles[g_main_device_index], oneapi::mkl::transpose::trans, | ||||
|             oneapi::mkl::transpose::nontrans, ne01, ne11, ne10, alpha, | ||||
|             (const char *)src0_as_f16, dpct::library_data_t::real_half, | ||||
|             nb01 / sizeof(sycl::half), src0->nb[2] / sizeof(sycl::half), | ||||
|             (const char *)src1_as_f16.get(), dpct::library_data_t::real_half, | ||||
|             nb11 / sizeof(float), src1->nb[2] / sizeof(float), beta, | ||||
|             (char *)dst_t, cu_data_type, ne01, dst->nb[2] / sizeof(float), | ||||
|             nb01 / nb00, nb02 / nb00, | ||||
|             (const char *)src1_f16, dpct::library_data_t::real_half, | ||||
|             nb11 / nb10, nb12 / nb10, beta, | ||||
|             (char *)dst_t, cu_data_type, ne01, nb2 / nb0, | ||||
|             ne12 * ne13, cu_compute_type))); | ||||
|     } else { | ||||
|         // use syclGemmBatchedEx | ||||
| @@ -13409,44 +13399,35 @@ static void ggml_sycl_mul_mat_mat_batched_sycl(const ggml_tensor *src0, | ||||
|                                          {sycl::aspect::fp16}); | ||||
|  | ||||
|             main_stream->submit([&](sycl::handler &cgh) { | ||||
|                 const sycl::half *src1_as_f16_get_ct1 = src1_as_f16.get(); | ||||
|                 const void **ptrs_src_get_ct3 = ptrs_src.get(); | ||||
|                 void **ptrs_dst_get_ct4 = ptrs_dst.get(); | ||||
|  | ||||
|                 const void **ptrs_src_get = ptrs_src.get(); | ||||
|                 void **ptrs_dst_get = ptrs_dst.get(); | ||||
|                 size_t nb12_scaled = src1->type == GGML_TYPE_F16 ? nb12 : nb12 / 2; | ||||
|                 size_t nb13_scaled = src1->type == GGML_TYPE_F16 ? nb13 : nb13 / 2; | ||||
|                 cgh.parallel_for(sycl::nd_range<3>(block_dims, block_dims), | ||||
|                                  [=](sycl::nd_item<3> item_ct1) { | ||||
|                                      k_compute_batched_ptrs( | ||||
|                                          src0_as_f16, src1_as_f16_get_ct1, | ||||
|                                          dst_t, ptrs_src_get_ct3, | ||||
|                                          ptrs_dst_get_ct4, ne12, ne13, ne23, | ||||
|                                          nb02, nb03, nb12, nb13, nbd2, nbd3, r2, | ||||
|                                          r3, item_ct1); | ||||
|                                          src0_as_f16, src1_f16, | ||||
|                                          dst_t, ptrs_src_get, | ||||
|                                          ptrs_dst_get, ne12, ne13, ne23, | ||||
|                                          nb02, nb03, nb12_scaled, nb13_scaled, | ||||
|                                          nbd2, nbd3, r2, r3, item_ct1); | ||||
|                                  }); | ||||
|             }); | ||||
|         } | ||||
|         /* | ||||
|         DPCT1010:95: SYCL uses exceptions to report errors and does not use the | ||||
|         error codes. The call was replaced with 0. You need to rewrite this | ||||
|         code. | ||||
|         */ | ||||
|         SYCL_CHECK(0); | ||||
|  | ||||
|         SYCL_CHECK(CHECK_TRY_ERROR(dpct::gemm_batch( | ||||
|             *g_sycl_handles[g_main_device_index], oneapi::mkl::transpose::trans, | ||||
|             oneapi::mkl::transpose::nontrans, ne01, ne11, ne10, alpha, | ||||
|             (const void **)(ptrs_src.get() + 0 * ne23), | ||||
|             dpct::library_data_t::real_half, nb01 / sizeof(sycl::half), | ||||
|             dpct::library_data_t::real_half, nb01 / nb00, | ||||
|             (const void **)(ptrs_src.get() + 1 * ne23), | ||||
|             dpct::library_data_t::real_half, nb11 / sizeof(float), beta, | ||||
|             dpct::library_data_t::real_half, nb11 / nb10, beta, | ||||
|             (void **)(ptrs_dst.get() + 0 * ne23), cu_data_type, ne01, ne23, | ||||
|             cu_compute_type))); | ||||
|     } | ||||
| #endif | ||||
|  | ||||
|     if (dst->op_params[0] == GGML_PREC_DEFAULT) { | ||||
|         const to_fp32_sycl_t to_fp32_sycl = ggml_get_to_fp32_sycl(GGML_TYPE_F16); | ||||
|         to_fp32_sycl(dst_f16.get(), dst_ddf, ne, main_stream); | ||||
|     } | ||||
|     const to_fp32_sycl_t to_fp32_sycl = ggml_get_to_fp32_sycl(GGML_TYPE_F16); | ||||
|     to_fp32_sycl(dst_f16.get(), dst_ddf, ne_dst, main_stream); | ||||
| } | ||||
| catch (sycl::exception const &exc) { | ||||
|   std::cerr << exc.what() << "Exception caught at file:" << __FILE__ | ||||
| @@ -13491,10 +13472,10 @@ static void ggml_sycl_mul_mat(const ggml_tensor * src0, const ggml_tensor * src1 | ||||
|         // KQV single-batch | ||||
|         // GGML_SYCL_DEBUG("ggml_sycl_mul_mat_vec_nc\n"); | ||||
|         ggml_sycl_mul_mat_vec_nc(src0, src1, dst); | ||||
|     } else if (!split && all_on_device && use_xmx && src0->type == GGML_TYPE_F16 && src1->type == GGML_TYPE_F32 && !ggml_is_transposed(src0) && !ggml_is_transposed(src1)) { | ||||
|     } else if (!split && all_on_device && use_xmx && src0->type == GGML_TYPE_F16 && !ggml_is_transposed(src0) && !ggml_is_transposed(src1)) { | ||||
|         // KQ + KQV multi-batch | ||||
|         // GGML_SYCL_DEBUG("ggml_sycl_mul_mat_mat_batched_sycl\n"); | ||||
|         ggml_sycl_mul_mat_mat_batched_sycl(src0, src1, dst); | ||||
|         // GGML_SYCL_DEBUG("ggml_sycl_mul_mat_batched_sycl\n"); | ||||
|         ggml_sycl_mul_mat_batched_sycl(src0, src1, dst); | ||||
|     } else if (src0->type == GGML_TYPE_F32) { | ||||
|         // GGML_SYCL_DEBUG("ggml_sycl_op_mul_mat\n"); | ||||
|         ggml_sycl_op_mul_mat(src0, src1, dst, ggml_sycl_op_mul_mat_sycl, false); | ||||
|   | ||||
		Reference in New Issue
	
	Block a user
	 AidanBeltonS
					AidanBeltonS