mirror of
				https://github.com/ggml-org/llama.cpp.git
				synced 2025-11-04 09:32:00 +00:00 
			
		
		
		
	Merge branch 'master' into gguf
This commit is contained in:
		
							
								
								
									
										1
									
								
								.gitignore
									
									
									
									
										vendored
									
									
								
							
							
						
						
									
										1
									
								
								.gitignore
									
									
									
									
										vendored
									
									
								
							@@ -51,6 +51,7 @@ models-mnt
 | 
			
		||||
/gguf
 | 
			
		||||
/gguf-llama-simple
 | 
			
		||||
/libllama.so
 | 
			
		||||
/llama-bench
 | 
			
		||||
build-info.h
 | 
			
		||||
arm_neon.h
 | 
			
		||||
compile_commands.json
 | 
			
		||||
 
 | 
			
		||||
							
								
								
									
										7
									
								
								Makefile
									
									
									
									
									
								
							
							
						
						
									
										7
									
								
								Makefile
									
									
									
									
									
								
							@@ -1,5 +1,5 @@
 | 
			
		||||
# Define the default target now so that it is always the first target
 | 
			
		||||
BUILD_TARGETS = main quantize quantize-stats perplexity embedding vdot train-text-from-scratch convert-llama2c-to-ggml simple server embd-input-test gguf
 | 
			
		||||
BUILD_TARGETS = main quantize quantize-stats perplexity embedding vdot train-text-from-scratch convert-llama2c-to-ggml simple server embd-input-test gguf llama-bench
 | 
			
		||||
 | 
			
		||||
# Binaries only useful for tests
 | 
			
		||||
TEST_TARGETS = tests/test-llama-grammar tests/test-grammar-parser tests/test-double-float tests/test-grad0 tests/test-opt tests/test-quantize-fns tests/test-quantize-perf tests/test-sampling tests/test-tokenizer-0
 | 
			
		||||
@@ -345,7 +345,7 @@ libllama.so: llama.o ggml.o $(OBJS)
 | 
			
		||||
	$(CXX) $(CXXFLAGS) -shared -fPIC -o $@ $^ $(LDFLAGS)
 | 
			
		||||
 | 
			
		||||
clean:
 | 
			
		||||
	rm -vf *.o *.so *.dll main quantize quantize-stats perplexity embedding benchmark-matmult save-load-state server simple vdot train-text-from-scratch convert-llama2c-to-ggml embd-input-test gguf build-info.h $(TEST_TARGETS)
 | 
			
		||||
	rm -vf *.o *.so *.dll main quantize quantize-stats perplexity embedding benchmark-matmult save-load-state server simple vdot train-text-from-scratch convert-llama2c-to-ggml embd-input-test gguf llama-bench build-info.h $(TEST_TARGETS)
 | 
			
		||||
 | 
			
		||||
#
 | 
			
		||||
# Examples
 | 
			
		||||
@@ -394,6 +394,9 @@ train-text-from-scratch: examples/train-text-from-scratch/train-text-from-scratc
 | 
			
		||||
convert-llama2c-to-ggml: examples/convert-llama2c-to-ggml/convert-llama2c-to-ggml.cpp    build-info.h ggml.o llama.o $(OBJS)
 | 
			
		||||
	$(CXX) $(CXXFLAGS) $(filter-out %.h,$^) -o $@ $(LDFLAGS)
 | 
			
		||||
 | 
			
		||||
llama-bench: examples/llama-bench/llama-bench.cpp build-info.h ggml.o llama.o common.o $(OBJS)
 | 
			
		||||
	$(CXX) $(CXXFLAGS) $(filter-out %.h,$^) -o $@ $(LDFLAGS)
 | 
			
		||||
 | 
			
		||||
build-info.h: $(wildcard .git/index) scripts/build-info.sh
 | 
			
		||||
	@sh scripts/build-info.sh > $@.tmp
 | 
			
		||||
	@if ! cmp -s $@.tmp $@; then \
 | 
			
		||||
 
 | 
			
		||||
@@ -96,6 +96,7 @@ as the main playground for developing new features for the [ggml](https://github
 | 
			
		||||
- Go: [go-skynet/go-llama.cpp](https://github.com/go-skynet/go-llama.cpp)
 | 
			
		||||
- Node.js: [hlhr202/llama-node](https://github.com/hlhr202/llama-node)
 | 
			
		||||
- Ruby: [yoshoku/llama_cpp.rb](https://github.com/yoshoku/llama_cpp.rb)
 | 
			
		||||
- Rust: [mdrokz/rust-llama.cpp](https://github.com/mdrokz/rust-llama.cpp)
 | 
			
		||||
- C#/.NET: [SciSharp/LLamaSharp](https://github.com/SciSharp/LLamaSharp)
 | 
			
		||||
- Scala 3: [donderom/llm4s](https://github.com/donderom/llm4s)
 | 
			
		||||
 | 
			
		||||
 
 | 
			
		||||
@@ -45,6 +45,7 @@ else()
 | 
			
		||||
    add_subdirectory(convert-llama2c-to-ggml)
 | 
			
		||||
    add_subdirectory(simple)
 | 
			
		||||
    add_subdirectory(embd-input)
 | 
			
		||||
    add_subdirectory(llama-bench)
 | 
			
		||||
    if (LLAMA_METAL)
 | 
			
		||||
        add_subdirectory(metal)
 | 
			
		||||
    endif()
 | 
			
		||||
 
 | 
			
		||||
							
								
								
									
										8
									
								
								examples/llama-bench/CMakeLists.txt
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										8
									
								
								examples/llama-bench/CMakeLists.txt
									
									
									
									
									
										Normal file
									
								
							@@ -0,0 +1,8 @@
 | 
			
		||||
set(TARGET llama-bench)
 | 
			
		||||
add_executable(${TARGET} llama-bench.cpp)
 | 
			
		||||
install(TARGETS ${TARGET} RUNTIME)
 | 
			
		||||
target_link_libraries(${TARGET} PRIVATE common llama ${CMAKE_THREAD_LIBS_INIT})
 | 
			
		||||
target_compile_features(${TARGET} PRIVATE cxx_std_11)
 | 
			
		||||
if(TARGET BUILD_INFO)
 | 
			
		||||
  add_dependencies(${TARGET} BUILD_INFO)
 | 
			
		||||
endif()
 | 
			
		||||
							
								
								
									
										969
									
								
								examples/llama-bench/llama-bench.cpp
									
									
									
									
									
										Executable file
									
								
							
							
						
						
									
										969
									
								
								examples/llama-bench/llama-bench.cpp
									
									
									
									
									
										Executable file
									
								
							@@ -0,0 +1,969 @@
 | 
			
		||||
#include <algorithm>
 | 
			
		||||
#include <array>
 | 
			
		||||
#include <cassert>
 | 
			
		||||
#include <chrono>
 | 
			
		||||
#include <cinttypes>
 | 
			
		||||
#include <cstring>
 | 
			
		||||
#include <ctime>
 | 
			
		||||
#include <iterator>
 | 
			
		||||
#include <map>
 | 
			
		||||
#include <numeric>
 | 
			
		||||
#include <regex>
 | 
			
		||||
#include <sstream>
 | 
			
		||||
#include <stdio.h>
 | 
			
		||||
#include <string>
 | 
			
		||||
#include <vector>
 | 
			
		||||
 | 
			
		||||
#include "ggml.h"
 | 
			
		||||
#include "llama.h"
 | 
			
		||||
#include "common.h"
 | 
			
		||||
#include "build-info.h"
 | 
			
		||||
#ifdef GGML_USE_CUBLAS
 | 
			
		||||
#include "ggml-cuda.h"
 | 
			
		||||
#endif
 | 
			
		||||
 | 
			
		||||
// utils
 | 
			
		||||
static uint64_t get_time_ns() {
 | 
			
		||||
    using clock = std::chrono::high_resolution_clock;
 | 
			
		||||
    return std::chrono::nanoseconds(clock::now().time_since_epoch()).count();
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
template<class T>
 | 
			
		||||
static std::string join(const std::vector<T> & values, const std::string & delim) {
 | 
			
		||||
    std::ostringstream str;
 | 
			
		||||
    for (size_t i = 0; i < values.size(); i++) {
 | 
			
		||||
        str << values[i];
 | 
			
		||||
        if (i < values.size() - 1) {
 | 
			
		||||
            str << delim;
 | 
			
		||||
        }
 | 
			
		||||
    }
 | 
			
		||||
    return str.str();
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
template<class T>
 | 
			
		||||
static std::vector<T> split(const std::string & str, char delim) {
 | 
			
		||||
    std::vector<T> values;
 | 
			
		||||
    std::istringstream str_stream(str);
 | 
			
		||||
    std::string token;
 | 
			
		||||
    while (std::getline(str_stream, token, delim)) {
 | 
			
		||||
        T value;
 | 
			
		||||
        std::istringstream token_stream(token);
 | 
			
		||||
        token_stream >> value;
 | 
			
		||||
        values.push_back(value);
 | 
			
		||||
    }
 | 
			
		||||
    return values;
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
template<typename T>
 | 
			
		||||
static T avg(const std::vector<T> & v) {
 | 
			
		||||
    if (v.empty()) {
 | 
			
		||||
        return 0;
 | 
			
		||||
    }
 | 
			
		||||
    T sum = std::accumulate(v.begin(), v.end(), T(0));
 | 
			
		||||
    return sum / (T)v.size();
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
template<typename T>
 | 
			
		||||
static T stdev(const std::vector<T> & v) {
 | 
			
		||||
    if (v.size() <= 1) {
 | 
			
		||||
        return 0;
 | 
			
		||||
    }
 | 
			
		||||
    T mean = avg(v);
 | 
			
		||||
    T sq_sum = std::inner_product(v.begin(), v.end(), v.begin(), T(0));
 | 
			
		||||
    T stdev = std::sqrt(sq_sum / (T)(v.size() - 1) - mean * mean * (T)v.size() / (T)(v.size() - 1));
 | 
			
		||||
    return stdev;
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
static bool ggml_cpu_has_metal() {
 | 
			
		||||
#if defined(GGML_USE_METAL)
 | 
			
		||||
    return true;
 | 
			
		||||
#else
 | 
			
		||||
    return false;
 | 
			
		||||
#endif
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
static std::string get_cpu_info() {
 | 
			
		||||
    std::string id;
 | 
			
		||||
#ifdef __linux__
 | 
			
		||||
    FILE * f = fopen("/proc/cpuinfo", "r");
 | 
			
		||||
    if (f) {
 | 
			
		||||
        char buf[1024];
 | 
			
		||||
        while (fgets(buf, sizeof(buf), f)) {
 | 
			
		||||
            if (strncmp(buf, "model name", 10) == 0) {
 | 
			
		||||
                char * p = strchr(buf, ':');
 | 
			
		||||
                if (p) {
 | 
			
		||||
                    p++;
 | 
			
		||||
                    while (std::isspace(*p)) {
 | 
			
		||||
                        p++;
 | 
			
		||||
                    }
 | 
			
		||||
                    while (std::isspace(p[strlen(p) - 1])) {
 | 
			
		||||
                        p[strlen(p) - 1] = '\0';
 | 
			
		||||
                    }
 | 
			
		||||
                    id = p;
 | 
			
		||||
                    break;
 | 
			
		||||
                }
 | 
			
		||||
            }
 | 
			
		||||
        }
 | 
			
		||||
    }
 | 
			
		||||
#endif
 | 
			
		||||
    // TODO: other platforms
 | 
			
		||||
    return id;
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
static std::string get_gpu_info() {
 | 
			
		||||
    std::string id;
 | 
			
		||||
#ifdef GGML_USE_CUBLAS
 | 
			
		||||
    int count = ggml_cuda_get_device_count();
 | 
			
		||||
    for (int i = 0; i < count; i++) {
 | 
			
		||||
        char buf[128];
 | 
			
		||||
        ggml_cuda_get_device_description(i, buf, sizeof(buf));
 | 
			
		||||
        id += buf;
 | 
			
		||||
        if (i < count - 1) {
 | 
			
		||||
            id += "/";
 | 
			
		||||
        }
 | 
			
		||||
    }
 | 
			
		||||
#endif
 | 
			
		||||
    // TODO: other backends
 | 
			
		||||
    return id;
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
// command line params
 | 
			
		||||
enum output_formats {CSV, JSON, MARKDOWN, SQL};
 | 
			
		||||
 | 
			
		||||
struct cmd_params {
 | 
			
		||||
    std::vector<std::string> model;
 | 
			
		||||
    std::vector<int> n_prompt;
 | 
			
		||||
    std::vector<int> n_gen;
 | 
			
		||||
    std::vector<int> n_batch;
 | 
			
		||||
    std::vector<bool> f32_kv;
 | 
			
		||||
    std::vector<int> n_threads;
 | 
			
		||||
    std::vector<int> n_gpu_layers;
 | 
			
		||||
    std::vector<int> main_gpu;
 | 
			
		||||
    std::vector<bool> mul_mat_q;
 | 
			
		||||
    std::vector<bool> low_vram;
 | 
			
		||||
    std::vector<std::array<float, LLAMA_MAX_DEVICES>> tensor_split;
 | 
			
		||||
    int reps;
 | 
			
		||||
    bool verbose;
 | 
			
		||||
    output_formats output_format;
 | 
			
		||||
};
 | 
			
		||||
 | 
			
		||||
static const cmd_params cmd_params_defaults = {
 | 
			
		||||
    /* model         */ {"models/7B/ggml-model-q4_0.bin"},
 | 
			
		||||
    /* n_prompt      */ {512},
 | 
			
		||||
    /* n_gen         */ {128},
 | 
			
		||||
    /* n_batch       */ {512},
 | 
			
		||||
    /* f32_kv        */ {false},
 | 
			
		||||
    /* n_threads     */ {get_num_physical_cores()},
 | 
			
		||||
    /* n_gpu_layers  */ {99},
 | 
			
		||||
    /* main_gpu      */ {0},
 | 
			
		||||
    /* mul_mat_q     */ {true},
 | 
			
		||||
    /* low_vram      */ {false},
 | 
			
		||||
    /* tensor_split  */ {{}},
 | 
			
		||||
    /* reps          */ 5,
 | 
			
		||||
    /* verbose       */ false,
 | 
			
		||||
    /* output_format */ MARKDOWN
 | 
			
		||||
};
 | 
			
		||||
 | 
			
		||||
static void print_usage(int /* argc */, char ** argv) {
 | 
			
		||||
    fprintf(stdout, "usage: %s [options]\n", argv[0]);
 | 
			
		||||
    fprintf(stdout, "\n");
 | 
			
		||||
    fprintf(stdout, "options:\n");
 | 
			
		||||
    fprintf(stdout, "  -h, --help\n");
 | 
			
		||||
    fprintf(stdout, "  -m, --model <filename>            (default: %s)\n", join(cmd_params_defaults.model, ",").c_str());
 | 
			
		||||
    fprintf(stdout, "  -p, --n-prompt <n>                (default: %s)\n", join(cmd_params_defaults.n_prompt, ",").c_str());
 | 
			
		||||
    fprintf(stdout, "  -n, --n-gen <n>                   (default: %s)\n", join(cmd_params_defaults.n_gen, ",").c_str());
 | 
			
		||||
    fprintf(stdout, "  -b, --batch-size <n>              (default: %s)\n", join(cmd_params_defaults.n_batch, ",").c_str());
 | 
			
		||||
    fprintf(stdout, "  --memory-f32 <0|1>                (default: %s)\n", join(cmd_params_defaults.f32_kv, ",").c_str());
 | 
			
		||||
    fprintf(stdout, "  -t, --threads <n>                 (default: %s)\n", join(cmd_params_defaults.n_threads, ",").c_str());
 | 
			
		||||
    fprintf(stdout, "  -ngl N, --n-gpu-layers <n>        (default: %s)\n", join(cmd_params_defaults.n_gpu_layers, ",").c_str());
 | 
			
		||||
    fprintf(stdout, "  -mg i, --main-gpu <n>             (default: %s)\n", join(cmd_params_defaults.main_gpu, ",").c_str());
 | 
			
		||||
    fprintf(stdout, "  -lv, --low-vram <0|1>             (default: %s)\n", join(cmd_params_defaults.low_vram, ",").c_str());
 | 
			
		||||
    fprintf(stdout, "  -mmq, --mul-mat-q <0|1>           (default: %s)\n", join(cmd_params_defaults.mul_mat_q, ",").c_str());
 | 
			
		||||
    fprintf(stdout, "  -ts, --tensor_split <ts>                       \n");
 | 
			
		||||
    fprintf(stdout, "  -r, --repetitions <n>             (default: %d)\n", cmd_params_defaults.reps);
 | 
			
		||||
    fprintf(stdout, "  -o, --output <csv|json|md|sql>    (default: %s)\n", cmd_params_defaults.output_format == CSV ? "csv" : cmd_params_defaults.output_format == JSON ? "json" : "md");
 | 
			
		||||
    fprintf(stdout, "  -v, --verbose                     (default: %s)\n", cmd_params_defaults.verbose ? "1" : "0");
 | 
			
		||||
    fprintf(stdout, "\n");
 | 
			
		||||
    fprintf(stdout, "Multiple values can be given for each parameter by separating them with ',' or by repeating the parameter.\n");
 | 
			
		||||
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
static cmd_params parse_cmd_params(int argc, char ** argv) {
 | 
			
		||||
    cmd_params params;
 | 
			
		||||
    std::string arg;
 | 
			
		||||
    bool invalid_param = false;
 | 
			
		||||
    const std::string arg_prefix = "--";
 | 
			
		||||
    const char split_delim = ',';
 | 
			
		||||
 | 
			
		||||
    params.verbose = cmd_params_defaults.verbose;
 | 
			
		||||
    params.output_format = cmd_params_defaults.output_format;
 | 
			
		||||
    params.reps = cmd_params_defaults.reps;
 | 
			
		||||
 | 
			
		||||
    for (int i = 1; i < argc; i++) {
 | 
			
		||||
        arg = argv[i];
 | 
			
		||||
        if (arg.compare(0, arg_prefix.size(), arg_prefix) == 0) {
 | 
			
		||||
            std::replace(arg.begin(), arg.end(), '_', '-');
 | 
			
		||||
        }
 | 
			
		||||
 | 
			
		||||
        if (arg == "-h" || arg == "--help") {
 | 
			
		||||
            print_usage(argc, argv);
 | 
			
		||||
            exit(0);
 | 
			
		||||
        } else if (arg == "-m" || arg == "--model") {
 | 
			
		||||
            if (++i >= argc) {
 | 
			
		||||
                invalid_param = true;
 | 
			
		||||
                break;
 | 
			
		||||
            }
 | 
			
		||||
            auto p = split<std::string>(argv[i], split_delim);
 | 
			
		||||
            params.model.insert(params.model.end(), p.begin(), p.end());
 | 
			
		||||
        } else if (arg == "-p" || arg == "--n-prompt") {
 | 
			
		||||
            if (++i >= argc) {
 | 
			
		||||
                invalid_param = true;
 | 
			
		||||
                break;
 | 
			
		||||
            }
 | 
			
		||||
            auto p = split<int>(argv[i], split_delim);
 | 
			
		||||
            params.n_prompt.insert(params.n_prompt.end(), p.begin(), p.end());
 | 
			
		||||
        } else if (arg == "-n" || arg == "--n-gen") {
 | 
			
		||||
            if (++i >= argc) {
 | 
			
		||||
                invalid_param = true;
 | 
			
		||||
                break;
 | 
			
		||||
            }
 | 
			
		||||
            auto p = split<int>(argv[i], split_delim);
 | 
			
		||||
            params.n_gen.insert(params.n_gen.end(), p.begin(), p.end());
 | 
			
		||||
        } else if (arg == "-b" || arg == "--batch-size") {
 | 
			
		||||
            if (++i >= argc) {
 | 
			
		||||
                invalid_param = true;
 | 
			
		||||
                break;
 | 
			
		||||
            }
 | 
			
		||||
            auto p = split<int>(argv[i], split_delim);
 | 
			
		||||
            params.n_batch.insert(params.n_batch.end(), p.begin(), p.end());
 | 
			
		||||
        } else if (arg == "--memory-f32") {
 | 
			
		||||
            if (++i >= argc) {
 | 
			
		||||
                invalid_param = true;
 | 
			
		||||
                break;
 | 
			
		||||
            }
 | 
			
		||||
            auto p = split<int>(argv[i], split_delim);
 | 
			
		||||
            params.f32_kv.insert(params.f32_kv.end(), p.begin(), p.end());
 | 
			
		||||
        } else if (arg == "-t" || arg == "--threads") {
 | 
			
		||||
            if (++i >= argc) {
 | 
			
		||||
                invalid_param = true;
 | 
			
		||||
                break;
 | 
			
		||||
            }
 | 
			
		||||
            auto p = split<int>(argv[i], split_delim);
 | 
			
		||||
            params.n_threads.insert(params.n_threads.end(), p.begin(), p.end());
 | 
			
		||||
        } else if (arg == "-ngl" || arg == "--n-gpu-layers") {
 | 
			
		||||
            if (++i >= argc) {
 | 
			
		||||
                invalid_param = true;
 | 
			
		||||
                break;
 | 
			
		||||
            }
 | 
			
		||||
            auto p = split<int>(argv[i], split_delim);
 | 
			
		||||
            params.n_gpu_layers.insert(params.n_gpu_layers.end(), p.begin(), p.end());
 | 
			
		||||
        } else if (arg == "-mg" || arg == "--main-gpu") {
 | 
			
		||||
            if (++i >= argc) {
 | 
			
		||||
                invalid_param = true;
 | 
			
		||||
                break;
 | 
			
		||||
            }
 | 
			
		||||
            params.main_gpu = split<int>(argv[i], split_delim);
 | 
			
		||||
        } else if (arg == "-lv" || arg == "--low-vram") {
 | 
			
		||||
            if (++i >= argc) {
 | 
			
		||||
                invalid_param = true;
 | 
			
		||||
                break;
 | 
			
		||||
            }
 | 
			
		||||
            auto p = split<bool>(argv[i], split_delim);
 | 
			
		||||
            params.low_vram.insert(params.low_vram.end(), p.begin(), p.end());
 | 
			
		||||
        } else if (arg == "-mmq" || arg == "--mul-mat-q") {
 | 
			
		||||
            if (++i >= argc) {
 | 
			
		||||
                invalid_param = true;
 | 
			
		||||
                break;
 | 
			
		||||
            }
 | 
			
		||||
            auto p = split<bool>(argv[i], split_delim);
 | 
			
		||||
            params.mul_mat_q.insert(params.mul_mat_q.end(), p.begin(), p.end());
 | 
			
		||||
        } else if (arg == "-ts" || arg == "--tensor-split") {
 | 
			
		||||
            if (++i >= argc) {
 | 
			
		||||
                invalid_param = true;
 | 
			
		||||
                break;
 | 
			
		||||
            }
 | 
			
		||||
            for (auto ts : split<std::string>(argv[i], split_delim)) {
 | 
			
		||||
                // split string by ; and /
 | 
			
		||||
                const std::regex regex{R"([;/]+)"};
 | 
			
		||||
                std::sregex_token_iterator it{ts.begin(), ts.end(), regex, -1};
 | 
			
		||||
                std::vector<std::string> split_arg{it, {}};
 | 
			
		||||
                GGML_ASSERT(split_arg.size() <= LLAMA_MAX_DEVICES);
 | 
			
		||||
 | 
			
		||||
                std::array<float, LLAMA_MAX_DEVICES> tensor_split;
 | 
			
		||||
                for (size_t i = 0; i < LLAMA_MAX_DEVICES; ++i) {
 | 
			
		||||
                    if (i < split_arg.size()) {
 | 
			
		||||
                        tensor_split[i] = std::stof(split_arg[i]);
 | 
			
		||||
                    } else {
 | 
			
		||||
                        tensor_split[i] = 0.0f;
 | 
			
		||||
                    }
 | 
			
		||||
                }
 | 
			
		||||
                params.tensor_split.push_back(tensor_split);
 | 
			
		||||
            }
 | 
			
		||||
        } else if (arg == "-r" || arg == "--repetitions") {
 | 
			
		||||
            if (++i >= argc) {
 | 
			
		||||
                invalid_param = true;
 | 
			
		||||
                break;
 | 
			
		||||
            }
 | 
			
		||||
            params.reps = std::stoi(argv[i]);
 | 
			
		||||
        } else if (arg == "-o" || arg == "--output") {
 | 
			
		||||
            if (++i >= argc) {
 | 
			
		||||
                invalid_param = true;
 | 
			
		||||
                break;
 | 
			
		||||
            }
 | 
			
		||||
            if (argv[i] == std::string("csv")) {
 | 
			
		||||
                params.output_format = CSV;
 | 
			
		||||
            } else if (argv[i] == std::string("json")) {
 | 
			
		||||
                params.output_format = JSON;
 | 
			
		||||
            } else if (argv[i] == std::string("md")) {
 | 
			
		||||
                params.output_format = MARKDOWN;
 | 
			
		||||
            } else if (argv[i] == std::string("sql")) {
 | 
			
		||||
                params.output_format = SQL;
 | 
			
		||||
            } else {
 | 
			
		||||
                invalid_param = true;
 | 
			
		||||
                break;
 | 
			
		||||
            }
 | 
			
		||||
        } else if (arg == "-v" || arg == "--verbose") {
 | 
			
		||||
            params.verbose = true;
 | 
			
		||||
        } else {
 | 
			
		||||
            invalid_param = true;
 | 
			
		||||
            break;
 | 
			
		||||
        }
 | 
			
		||||
    }
 | 
			
		||||
    if (invalid_param) {
 | 
			
		||||
        fprintf(stderr, "error: invalid parameter for argument: %s\n", arg.c_str());
 | 
			
		||||
        print_usage(argc, argv);
 | 
			
		||||
        exit(1);
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
    // set defaults
 | 
			
		||||
    if (params.model.empty())        { params.model = cmd_params_defaults.model; }
 | 
			
		||||
    if (params.n_prompt.empty())     { params.n_prompt = cmd_params_defaults.n_prompt; }
 | 
			
		||||
    if (params.n_gen.empty())        { params.n_gen = cmd_params_defaults.n_gen; }
 | 
			
		||||
    if (params.n_batch.empty())      { params.n_batch = cmd_params_defaults.n_batch; }
 | 
			
		||||
    if (params.f32_kv.empty())       { params.f32_kv = cmd_params_defaults.f32_kv; }
 | 
			
		||||
    if (params.n_gpu_layers.empty()) { params.n_gpu_layers = cmd_params_defaults.n_gpu_layers; }
 | 
			
		||||
    if (params.main_gpu.empty())     { params.main_gpu = cmd_params_defaults.main_gpu; }
 | 
			
		||||
    if (params.mul_mat_q.empty())    { params.mul_mat_q = cmd_params_defaults.mul_mat_q; }
 | 
			
		||||
    if (params.low_vram.empty())     { params.low_vram = cmd_params_defaults.low_vram; }
 | 
			
		||||
    if (params.tensor_split.empty()) { params.tensor_split = cmd_params_defaults.tensor_split; }
 | 
			
		||||
    if (params.n_threads.empty())    { params.n_threads = cmd_params_defaults.n_threads; }
 | 
			
		||||
 | 
			
		||||
    return params;
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
struct cmd_params_instance {
 | 
			
		||||
    std::string model;
 | 
			
		||||
    int n_prompt;
 | 
			
		||||
    int n_gen;
 | 
			
		||||
    int n_batch;
 | 
			
		||||
    bool f32_kv;
 | 
			
		||||
    int n_threads;
 | 
			
		||||
    int n_gpu_layers;
 | 
			
		||||
    int main_gpu;
 | 
			
		||||
    bool mul_mat_q;
 | 
			
		||||
    bool low_vram;
 | 
			
		||||
    std::array<float, LLAMA_MAX_DEVICES> tensor_split;
 | 
			
		||||
 | 
			
		||||
    llama_context_params to_llama_params() const {
 | 
			
		||||
        llama_context_params lparams = llama_context_default_params();
 | 
			
		||||
        lparams.n_ctx = n_prompt + n_gen;
 | 
			
		||||
        lparams.n_batch = n_batch;
 | 
			
		||||
        lparams.f16_kv = !f32_kv;
 | 
			
		||||
        lparams.n_gpu_layers = n_gpu_layers;
 | 
			
		||||
        lparams.main_gpu = main_gpu;
 | 
			
		||||
        lparams.mul_mat_q = mul_mat_q;
 | 
			
		||||
        lparams.low_vram = low_vram;
 | 
			
		||||
        lparams.tensor_split = tensor_split.data();
 | 
			
		||||
 | 
			
		||||
        return lparams;
 | 
			
		||||
    }
 | 
			
		||||
};
 | 
			
		||||
 | 
			
		||||
static std::vector<cmd_params_instance> get_cmd_params_instances_int(const cmd_params & params, int n_gen, int n_prompt) {
 | 
			
		||||
    std::vector<cmd_params_instance> instances;
 | 
			
		||||
 | 
			
		||||
    for (const auto & m : params.model)
 | 
			
		||||
    for (const auto & nb : params.n_batch)
 | 
			
		||||
    for (const auto & fk : params.f32_kv)
 | 
			
		||||
    for (const auto & nl : params.n_gpu_layers)
 | 
			
		||||
    for (const auto & mg : params.main_gpu)
 | 
			
		||||
    for (const auto & mmq : params.mul_mat_q)
 | 
			
		||||
    for (const auto & lv : params.low_vram)
 | 
			
		||||
    for (const auto & ts : params.tensor_split)
 | 
			
		||||
    for (const auto & nt : params.n_threads) {
 | 
			
		||||
        cmd_params_instance instance = {
 | 
			
		||||
            /* .model        = */ m,
 | 
			
		||||
            /* .n_prompt     = */ n_prompt,
 | 
			
		||||
            /* .n_gen        = */ n_gen,
 | 
			
		||||
            /* .n_batch      = */ nb,
 | 
			
		||||
            /* .f32_kv       = */ fk,
 | 
			
		||||
            /* .n_threads    = */ nt,
 | 
			
		||||
            /* .n_gpu_layers = */ nl,
 | 
			
		||||
            /* .main_gpu     = */ mg,
 | 
			
		||||
            /* .mul_mat_q    = */ mmq,
 | 
			
		||||
            /* .low_vram     = */ lv,
 | 
			
		||||
            /* .tensor_split = */ ts,
 | 
			
		||||
        };
 | 
			
		||||
        instances.push_back(instance);
 | 
			
		||||
    }
 | 
			
		||||
    return instances;
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
static std::vector<cmd_params_instance> get_cmd_params_instances(const cmd_params & params) {
 | 
			
		||||
    std::vector<cmd_params_instance> instances;
 | 
			
		||||
 | 
			
		||||
    for (const auto & n_prompt : params.n_prompt) {
 | 
			
		||||
        if (n_prompt == 0) {
 | 
			
		||||
            continue;
 | 
			
		||||
        }
 | 
			
		||||
        auto instances_prompt = get_cmd_params_instances_int(params, 0, n_prompt);
 | 
			
		||||
        instances.insert(instances.end(), instances_prompt.begin(), instances_prompt.end());
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
    for (const auto & n_gen : params.n_gen) {
 | 
			
		||||
        if (n_gen == 0) {
 | 
			
		||||
            continue;
 | 
			
		||||
        }
 | 
			
		||||
        auto instances_gen = get_cmd_params_instances_int(params, n_gen, 0);
 | 
			
		||||
        instances.insert(instances.end(), instances_gen.begin(), instances_gen.end());
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
    return instances;
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
struct test {
 | 
			
		||||
    static const std::string build_commit;
 | 
			
		||||
    static const int build_number;
 | 
			
		||||
    static const bool cuda;
 | 
			
		||||
    static const bool opencl;
 | 
			
		||||
    static const bool metal;
 | 
			
		||||
    static const bool gpu_blas;
 | 
			
		||||
    static const bool blas;
 | 
			
		||||
    static const std::string cpu_info;
 | 
			
		||||
    static const std::string gpu_info;
 | 
			
		||||
    std::string model_filename;
 | 
			
		||||
    std::string model_type;
 | 
			
		||||
    int n_batch;
 | 
			
		||||
    int n_threads;
 | 
			
		||||
    bool f32_kv;
 | 
			
		||||
    int n_gpu_layers;
 | 
			
		||||
    int main_gpu;
 | 
			
		||||
    bool mul_mat_q;
 | 
			
		||||
    bool low_vram;
 | 
			
		||||
    std::array<float, LLAMA_MAX_DEVICES> tensor_split;
 | 
			
		||||
    int n_prompt;
 | 
			
		||||
    int n_gen;
 | 
			
		||||
    std::string test_time;
 | 
			
		||||
    std::vector<uint64_t> samples_ns;
 | 
			
		||||
 | 
			
		||||
    test(const cmd_params_instance & inst, const llama_model * lmodel, const llama_context * ctx) {
 | 
			
		||||
        model_filename = inst.model;
 | 
			
		||||
        char buf[128];
 | 
			
		||||
        llama_model_type(lmodel, buf, sizeof(buf));
 | 
			
		||||
        model_type = buf;
 | 
			
		||||
        n_batch = inst.n_batch;
 | 
			
		||||
        n_threads = inst.n_threads;
 | 
			
		||||
        f32_kv = inst.f32_kv;
 | 
			
		||||
        n_gpu_layers = inst.n_gpu_layers;
 | 
			
		||||
        main_gpu = inst.main_gpu;
 | 
			
		||||
        mul_mat_q = inst.mul_mat_q;
 | 
			
		||||
        low_vram = inst.low_vram;
 | 
			
		||||
        tensor_split = inst.tensor_split;
 | 
			
		||||
        n_prompt = inst.n_prompt;
 | 
			
		||||
        n_gen = inst.n_gen;
 | 
			
		||||
        // RFC 3339 date-time format
 | 
			
		||||
        time_t t = time(NULL);
 | 
			
		||||
        std::strftime(buf, sizeof(buf), "%FT%TZ", gmtime(&t));
 | 
			
		||||
        test_time = buf;
 | 
			
		||||
 | 
			
		||||
        (void) ctx;
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
    uint64_t avg_ns() const {
 | 
			
		||||
        return ::avg(samples_ns);
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
    uint64_t stdev_ns() const {
 | 
			
		||||
        return ::stdev(samples_ns);
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
    std::vector<double> get_ts() const {
 | 
			
		||||
        int n_tokens = n_prompt + n_gen;
 | 
			
		||||
        std::vector<double> ts;
 | 
			
		||||
        std::transform(samples_ns.begin(), samples_ns.end(), std::back_inserter(ts), [n_tokens](uint64_t t) { return 1e9 * n_tokens / t; });
 | 
			
		||||
        return ts;
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
    double avg_ts() const {
 | 
			
		||||
        return ::avg(get_ts());
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
    double stdev_ts() const {
 | 
			
		||||
        return ::stdev(get_ts());
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
    static std::string get_backend() {
 | 
			
		||||
        if (cuda) {
 | 
			
		||||
            return "CUDA";
 | 
			
		||||
        }
 | 
			
		||||
        if (opencl) {
 | 
			
		||||
            return "OpenCL";
 | 
			
		||||
        }
 | 
			
		||||
        if (metal) {
 | 
			
		||||
            return "Metal";
 | 
			
		||||
        }
 | 
			
		||||
        if (gpu_blas) {
 | 
			
		||||
            return "GPU BLAS";
 | 
			
		||||
        }
 | 
			
		||||
        if (blas) {
 | 
			
		||||
            return "BLAS";
 | 
			
		||||
        }
 | 
			
		||||
        return "CPU";
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
    static const std::vector<std::string> & get_fields() {
 | 
			
		||||
        static const std::vector<std::string> fields = {
 | 
			
		||||
            "build_commit", "build_number",
 | 
			
		||||
            "cuda", "opencl", "metal", "gpu_blas", "blas",
 | 
			
		||||
            "cpu_info", "gpu_info",
 | 
			
		||||
            "model_filename", "model_type",
 | 
			
		||||
            "n_batch", "n_threads", "f16_kv",
 | 
			
		||||
            "n_gpu_layers", "main_gpu", "mul_mat_q", "low_vram", "tensor_split",
 | 
			
		||||
            "n_prompt", "n_gen", "test_time",
 | 
			
		||||
            "avg_ns", "stddev_ns",
 | 
			
		||||
            "avg_ts", "stddev_ts"
 | 
			
		||||
        };
 | 
			
		||||
        return fields;
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
    enum field_type {STRING, BOOL, INT, FLOAT};
 | 
			
		||||
 | 
			
		||||
    static field_type get_field_type(const std::string & field) {
 | 
			
		||||
        if (field == "build_number" || field == "n_batch" || field == "n_threads" ||
 | 
			
		||||
            field == "n_gpu_layers" || field == "main_gpu" ||
 | 
			
		||||
            field == "n_prompt" || field == "n_gen" ||
 | 
			
		||||
            field == "avg_ns" || field == "stddev_ns") {
 | 
			
		||||
            return INT;
 | 
			
		||||
        }
 | 
			
		||||
        if (field == "cuda" || field == "opencl" || field == "metal" || field == "gpu_blas" || field == "blas" ||
 | 
			
		||||
            field == "f16_kv" || field == "mul_mat_q" || field == "low_vram") {
 | 
			
		||||
            return BOOL;
 | 
			
		||||
        }
 | 
			
		||||
        if (field == "avg_ts" || field == "stddev_ts") {
 | 
			
		||||
            return FLOAT;
 | 
			
		||||
        }
 | 
			
		||||
        return STRING;
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
    std::vector<std::string> get_values() const {
 | 
			
		||||
        std::string tensor_split_str;
 | 
			
		||||
        int max_nonzero = 0;
 | 
			
		||||
        for (int i = 0; i < LLAMA_MAX_DEVICES; i++) {
 | 
			
		||||
            if (tensor_split[i] > 0) {
 | 
			
		||||
                max_nonzero = i;
 | 
			
		||||
            }
 | 
			
		||||
        }
 | 
			
		||||
        for (int i = 0; i <= max_nonzero; i++) {
 | 
			
		||||
            char buf[32];
 | 
			
		||||
            snprintf(buf, sizeof(buf), "%.2f", tensor_split[i]);
 | 
			
		||||
            tensor_split_str += buf;
 | 
			
		||||
            if (i < max_nonzero) {
 | 
			
		||||
                tensor_split_str += "/";
 | 
			
		||||
            }
 | 
			
		||||
        }
 | 
			
		||||
        std::vector<std::string> values = {
 | 
			
		||||
            build_commit, std::to_string(build_number),
 | 
			
		||||
            std::to_string(cuda), std::to_string(opencl), std::to_string(metal), std::to_string(gpu_blas), std::to_string(blas),
 | 
			
		||||
            cpu_info, gpu_info,
 | 
			
		||||
            model_filename, model_type,
 | 
			
		||||
            std::to_string(n_batch), std::to_string(n_threads), std::to_string(!f32_kv),
 | 
			
		||||
            std::to_string(n_gpu_layers), std::to_string(main_gpu), std::to_string(mul_mat_q), std::to_string(low_vram), tensor_split_str,
 | 
			
		||||
            std::to_string(n_prompt), std::to_string(n_gen), test_time,
 | 
			
		||||
            std::to_string(avg_ns()), std::to_string(stdev_ns()),
 | 
			
		||||
            std::to_string(avg_ts()), std::to_string(stdev_ts())
 | 
			
		||||
        };
 | 
			
		||||
        return values;
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
    std::map<std::string, std::string> get_map() const {
 | 
			
		||||
        std::map<std::string, std::string> map;
 | 
			
		||||
        auto fields = get_fields();
 | 
			
		||||
        auto values = get_values();
 | 
			
		||||
        std::transform(fields.begin(), fields.end(), values.begin(),
 | 
			
		||||
                std::inserter(map, map.end()), std::make_pair<const std::string &, const std::string &>);
 | 
			
		||||
        return map;
 | 
			
		||||
    }
 | 
			
		||||
};
 | 
			
		||||
 | 
			
		||||
const std::string test::build_commit = BUILD_COMMIT;
 | 
			
		||||
const int         test::build_number = BUILD_NUMBER;
 | 
			
		||||
const bool        test::cuda         = !!ggml_cpu_has_cublas();
 | 
			
		||||
const bool        test::opencl       = !!ggml_cpu_has_clblast();
 | 
			
		||||
const bool        test::metal        = !!ggml_cpu_has_metal();
 | 
			
		||||
const bool        test::gpu_blas     = !!ggml_cpu_has_gpublas();
 | 
			
		||||
const bool        test::blas         = !!ggml_cpu_has_blas();
 | 
			
		||||
const std::string test::cpu_info     = get_cpu_info();
 | 
			
		||||
const std::string test::gpu_info     = get_gpu_info();
 | 
			
		||||
 | 
			
		||||
struct printer {
 | 
			
		||||
    virtual ~printer() {}
 | 
			
		||||
 | 
			
		||||
    FILE * fout;
 | 
			
		||||
    virtual void print_header(const cmd_params & params) { (void) params; };
 | 
			
		||||
    virtual void print_test(const test & t) = 0;
 | 
			
		||||
    virtual void print_footer() { };
 | 
			
		||||
};
 | 
			
		||||
 | 
			
		||||
struct csv_printer : public printer {
 | 
			
		||||
    static std::string escape_csv(const std::string & field) {
 | 
			
		||||
        std::string escaped = "\"";
 | 
			
		||||
        for (auto c : field) {
 | 
			
		||||
            if (c == '"') {
 | 
			
		||||
                escaped += "\"";
 | 
			
		||||
            }
 | 
			
		||||
            escaped += c;
 | 
			
		||||
        }
 | 
			
		||||
        escaped += "\"";
 | 
			
		||||
        return escaped;
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
    void print_header(const cmd_params & params) override  {
 | 
			
		||||
        std::vector<std::string> fields = test::get_fields();
 | 
			
		||||
        fprintf(fout, "%s\n", join(fields, ",").c_str());
 | 
			
		||||
        (void) params;
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
    void print_test(const test & t) override {
 | 
			
		||||
        std::vector<std::string> values = t.get_values();
 | 
			
		||||
        std::transform(values.begin(), values.end(), values.begin(), escape_csv);
 | 
			
		||||
        fprintf(fout, "%s\n", join(values, ",").c_str());
 | 
			
		||||
    }
 | 
			
		||||
};
 | 
			
		||||
 | 
			
		||||
struct json_printer : public printer {
 | 
			
		||||
    bool first = true;
 | 
			
		||||
 | 
			
		||||
    static std::string escape_json(const std::string & value) {
 | 
			
		||||
        std::string escaped;
 | 
			
		||||
        for (auto c : value) {
 | 
			
		||||
            if (c == '"') {
 | 
			
		||||
                escaped += "\\\"";
 | 
			
		||||
            } else if (c == '\\') {
 | 
			
		||||
                escaped += "\\\\";
 | 
			
		||||
            } else  if (c <= 0x1f) {
 | 
			
		||||
                char buf[8];
 | 
			
		||||
                snprintf(buf, sizeof(buf), "\\u%04x", c);
 | 
			
		||||
                escaped += buf;
 | 
			
		||||
            } else {
 | 
			
		||||
                escaped += c;
 | 
			
		||||
            }
 | 
			
		||||
        }
 | 
			
		||||
        return escaped;
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
    static std::string format_value(const std::string & field, const std::string & value) {
 | 
			
		||||
        switch (test::get_field_type(field)) {
 | 
			
		||||
            case test::STRING:
 | 
			
		||||
                return "\"" + escape_json(value) + "\"";
 | 
			
		||||
            case test::BOOL:
 | 
			
		||||
                return value == "0" ? "false" : "true";
 | 
			
		||||
            default:
 | 
			
		||||
                return value;
 | 
			
		||||
        }
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
    void print_header(const cmd_params & params) override {
 | 
			
		||||
        fprintf(fout, "[\n");
 | 
			
		||||
        (void) params;
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
    void print_fields(const std::vector<std::string> & fields, const std::vector<std::string> & values) {
 | 
			
		||||
        assert(fields.size() == values.size());
 | 
			
		||||
        for (size_t i = 0; i < fields.size(); i++) {
 | 
			
		||||
            fprintf(fout, "    \"%s\": %s,\n", fields.at(i).c_str(), format_value(fields.at(i), values.at(i)).c_str());
 | 
			
		||||
        }
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
    void print_test(const test & t) override {
 | 
			
		||||
        if (first) {
 | 
			
		||||
            first = false;
 | 
			
		||||
        } else {
 | 
			
		||||
            fprintf(fout, ",\n");
 | 
			
		||||
        }
 | 
			
		||||
        fprintf(fout, "  {\n");
 | 
			
		||||
        print_fields(test::get_fields(), t.get_values());
 | 
			
		||||
        fprintf(fout, "    \"samples_ns\": [ %s ],\n", join(t.samples_ns, ", ").c_str());
 | 
			
		||||
        fprintf(fout, "    \"samples_ts\": [ %s ]\n", join(t.get_ts(), ", ").c_str());
 | 
			
		||||
        fprintf(fout, "  }");
 | 
			
		||||
        fflush(fout);
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
    void print_footer() override {
 | 
			
		||||
        fprintf(fout, "\n]\n");
 | 
			
		||||
    }
 | 
			
		||||
};
 | 
			
		||||
 | 
			
		||||
struct markdown_printer : public printer {
 | 
			
		||||
    std::vector<std::string> fields;
 | 
			
		||||
 | 
			
		||||
    static int get_field_width(const std::string & field) {
 | 
			
		||||
        if (field == "model") {
 | 
			
		||||
            return -30;
 | 
			
		||||
        }
 | 
			
		||||
        if (field == "t/s") {
 | 
			
		||||
            return 15;
 | 
			
		||||
        }
 | 
			
		||||
        int width = std::max((int)field.length(), 10);
 | 
			
		||||
 | 
			
		||||
        if (test::get_field_type(field) == test::STRING) {
 | 
			
		||||
            return -width;
 | 
			
		||||
        }
 | 
			
		||||
        return width;
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
    void print_header(const cmd_params & params) override {
 | 
			
		||||
        // select fields to print
 | 
			
		||||
        fields = { "model", "backend" };
 | 
			
		||||
        bool is_cpu_backend = test::get_backend() == "CPU" || test::get_backend() == "BLAS";
 | 
			
		||||
        if (!is_cpu_backend) {
 | 
			
		||||
            fields.push_back("n_gpu_layers");
 | 
			
		||||
        }
 | 
			
		||||
        if (params.n_batch.size() > 1 || params.n_threads != cmd_params_defaults.n_threads || is_cpu_backend) {
 | 
			
		||||
            fields.push_back("n_threads");
 | 
			
		||||
        }
 | 
			
		||||
        if (params.n_batch.size() > 1 || params.n_batch != cmd_params_defaults.n_batch) {
 | 
			
		||||
            fields.push_back("n_batch");
 | 
			
		||||
        }
 | 
			
		||||
        if (params.f32_kv.size() > 1 || params.f32_kv != cmd_params_defaults.f32_kv) {
 | 
			
		||||
            fields.push_back("f16_kv");
 | 
			
		||||
        }
 | 
			
		||||
        if (params.main_gpu.size() > 1 || params.main_gpu != cmd_params_defaults.main_gpu) {
 | 
			
		||||
            fields.push_back("main_gpu");
 | 
			
		||||
        }
 | 
			
		||||
        if (params.mul_mat_q.size() > 1 || params.mul_mat_q != cmd_params_defaults.mul_mat_q) {
 | 
			
		||||
            fields.push_back("mul_mat_q");
 | 
			
		||||
        }
 | 
			
		||||
        if (params.low_vram.size() > 1 || params.low_vram != cmd_params_defaults.low_vram) {
 | 
			
		||||
            fields.push_back("low_vram");
 | 
			
		||||
        }
 | 
			
		||||
        if (params.tensor_split.size() > 1 || params.tensor_split != cmd_params_defaults.tensor_split) {
 | 
			
		||||
            fields.push_back("tensor_split");
 | 
			
		||||
        }
 | 
			
		||||
        fields.push_back("test");
 | 
			
		||||
        fields.push_back("t/s");
 | 
			
		||||
 | 
			
		||||
        fprintf(fout, "|");
 | 
			
		||||
        for (const auto & field : fields) {
 | 
			
		||||
            fprintf(fout, " %*s |", get_field_width(field), field.c_str());
 | 
			
		||||
        }
 | 
			
		||||
        fprintf(fout, "\n");
 | 
			
		||||
        fprintf(fout, "|");
 | 
			
		||||
        for (const auto & field : fields) {
 | 
			
		||||
            int width = get_field_width(field);
 | 
			
		||||
            fprintf(fout, " %s%s |", std::string(std::abs(width) - 1, '-').c_str(), width > 0 ? ":" : "-");
 | 
			
		||||
        }
 | 
			
		||||
        fprintf(fout, "\n");
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
    void print_test(const test & t) override {
 | 
			
		||||
        std::map<std::string, std::string> vmap = t.get_map();
 | 
			
		||||
 | 
			
		||||
        fprintf(fout, "|");
 | 
			
		||||
        for (const auto & field : fields) {
 | 
			
		||||
            std::string value;
 | 
			
		||||
            if (field == "model") {
 | 
			
		||||
                value = t.model_type;
 | 
			
		||||
            } else if (field == "backend") {
 | 
			
		||||
                value = test::get_backend();
 | 
			
		||||
            } else if (field == "test") {
 | 
			
		||||
                char buf[128];
 | 
			
		||||
                if (t.n_prompt > 0 && t.n_gen == 0) {
 | 
			
		||||
                    snprintf(buf, sizeof(buf), "pp %d", t.n_prompt);
 | 
			
		||||
                } else if (t.n_gen > 0 && t.n_prompt == 0) {
 | 
			
		||||
                    snprintf(buf, sizeof(buf), "tg %d", t.n_gen);
 | 
			
		||||
                } else {
 | 
			
		||||
                    assert(false);
 | 
			
		||||
                    exit(1);
 | 
			
		||||
                }
 | 
			
		||||
                value = buf;
 | 
			
		||||
            } else if (field == "t/s") {
 | 
			
		||||
                char buf[128];
 | 
			
		||||
                snprintf(buf, sizeof(buf), "%.2f ± %.2f", t.avg_ts(), t.stdev_ts());
 | 
			
		||||
                value = buf;
 | 
			
		||||
            } else if (vmap.find(field) != vmap.end()) {
 | 
			
		||||
                value = vmap.at(field);
 | 
			
		||||
            } else {
 | 
			
		||||
                assert(false);
 | 
			
		||||
                exit(1);
 | 
			
		||||
            }
 | 
			
		||||
 | 
			
		||||
            int width = get_field_width(field);
 | 
			
		||||
            if (field == "t/s") {
 | 
			
		||||
                // HACK: the utf-8 character is 2 bytes
 | 
			
		||||
                width += 1;
 | 
			
		||||
            }
 | 
			
		||||
            fprintf(fout, " %*s |", width, value.c_str());
 | 
			
		||||
        }
 | 
			
		||||
        fprintf(fout, "\n");
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
    void print_footer() override {
 | 
			
		||||
        fprintf(fout, "\nbuild: %s (%d)\n", test::build_commit.c_str(), test::build_number);
 | 
			
		||||
    }
 | 
			
		||||
};
 | 
			
		||||
 | 
			
		||||
struct sql_printer : public printer {
 | 
			
		||||
    static std::string get_sql_field_type(const std::string & field) {
 | 
			
		||||
        switch (test::get_field_type(field)) {
 | 
			
		||||
            case test::STRING:
 | 
			
		||||
                return "TEXT";
 | 
			
		||||
            case test::BOOL:
 | 
			
		||||
            case test::INT:
 | 
			
		||||
                return "INTEGER";
 | 
			
		||||
            case test::FLOAT:
 | 
			
		||||
                return "REAL";
 | 
			
		||||
            default:
 | 
			
		||||
                assert(false);
 | 
			
		||||
                exit(1);
 | 
			
		||||
        }
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
    void print_header(const cmd_params & params) override {
 | 
			
		||||
        std::vector<std::string> fields = test::get_fields();
 | 
			
		||||
        fprintf(fout, "CREATE TABLE IF NOT EXISTS test (\n");
 | 
			
		||||
        for (size_t i = 0; i < fields.size(); i++) {
 | 
			
		||||
            fprintf(fout, "  %s %s%s\n", fields.at(i).c_str(), get_sql_field_type(fields.at(i)).c_str(),  i < fields.size() - 1 ? "," : "");
 | 
			
		||||
        }
 | 
			
		||||
        fprintf(fout, ");\n");
 | 
			
		||||
        fprintf(fout, "\n");
 | 
			
		||||
        (void) params;
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
    void print_test(const test & t) override {
 | 
			
		||||
        fprintf(fout, "INSERT INTO test (%s) ", join(test::get_fields(), ", ").c_str());
 | 
			
		||||
        fprintf(fout, "VALUES (");
 | 
			
		||||
        std::vector<std::string> values = t.get_values();
 | 
			
		||||
        for (size_t i = 0; i < values.size(); i++) {
 | 
			
		||||
            fprintf(fout, "'%s'%s", values.at(i).c_str(), i < values.size() - 1 ? ", " : "");
 | 
			
		||||
        }
 | 
			
		||||
        fprintf(fout, ");\n");
 | 
			
		||||
    }
 | 
			
		||||
};
 | 
			
		||||
 | 
			
		||||
static void test_prompt(llama_context * ctx, int n_prompt, int n_past, int n_batch, int n_threads) {
 | 
			
		||||
    std::vector<llama_token> tokens(n_batch, llama_token_bos());
 | 
			
		||||
    int n_processed = 0;
 | 
			
		||||
    while (n_processed < n_prompt) {
 | 
			
		||||
        int n_tokens = std::min(n_prompt - n_processed, n_batch);
 | 
			
		||||
        llama_eval(ctx, tokens.data(), n_tokens, n_past + n_processed, n_threads);
 | 
			
		||||
        n_processed += n_tokens;
 | 
			
		||||
    }
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
static void test_gen(llama_context * ctx, int n_gen, int n_past, int n_threads) {
 | 
			
		||||
    llama_token token = llama_token_bos();
 | 
			
		||||
    for (int i = 0; i < n_gen; i++) {
 | 
			
		||||
        llama_eval(ctx, &token, 1, n_past + i, n_threads);
 | 
			
		||||
    }
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
static void llama_null_log_callback(enum llama_log_level level, const char * text, void * user_data) {
 | 
			
		||||
    (void) level;
 | 
			
		||||
    (void) text;
 | 
			
		||||
    (void) user_data;
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
int main(int argc, char ** argv) {
 | 
			
		||||
#if !defined(NDEBUG)
 | 
			
		||||
    fprintf(stderr, "warning: asserts enabled, performance may be affected\n");
 | 
			
		||||
#endif
 | 
			
		||||
 | 
			
		||||
#if (defined(_MSC_VER) && defined(_DEBUG)) || (!defined(_MSC_VER) && !defined(__OPTIMIZE__))
 | 
			
		||||
    fprintf(stderr, "warning: debug build, performance may be affected\n");
 | 
			
		||||
#endif
 | 
			
		||||
 | 
			
		||||
#if defined(__SANITIZE_ADDRESS__) || defined(__SANITIZE_THREAD__)
 | 
			
		||||
    fprintf(stderr, "warning: sanitizer enabled, performance may be affected\n");
 | 
			
		||||
#endif
 | 
			
		||||
 | 
			
		||||
    cmd_params params = parse_cmd_params(argc, argv);
 | 
			
		||||
 | 
			
		||||
    // initialize llama.cpp
 | 
			
		||||
    if (!params.verbose) {
 | 
			
		||||
        llama_log_set(llama_null_log_callback, NULL);
 | 
			
		||||
    }
 | 
			
		||||
    bool numa = false;
 | 
			
		||||
    llama_backend_init(numa);
 | 
			
		||||
 | 
			
		||||
    // initialize printer
 | 
			
		||||
    std::unique_ptr<printer> p;
 | 
			
		||||
    switch (params.output_format) {
 | 
			
		||||
        case CSV:
 | 
			
		||||
            p.reset(new csv_printer());
 | 
			
		||||
            break;
 | 
			
		||||
        case JSON:
 | 
			
		||||
            p.reset(new json_printer());
 | 
			
		||||
            break;
 | 
			
		||||
        case MARKDOWN:
 | 
			
		||||
            p.reset(new markdown_printer());
 | 
			
		||||
            break;
 | 
			
		||||
        case SQL:
 | 
			
		||||
            p.reset(new sql_printer());
 | 
			
		||||
            break;
 | 
			
		||||
        default:
 | 
			
		||||
            assert(false);
 | 
			
		||||
            exit(1);
 | 
			
		||||
    }
 | 
			
		||||
    p->fout = stdout;
 | 
			
		||||
    p->print_header(params);
 | 
			
		||||
 | 
			
		||||
    std::vector<cmd_params_instance> params_instances = get_cmd_params_instances(params);
 | 
			
		||||
 | 
			
		||||
    for (const auto & inst : params_instances) {
 | 
			
		||||
        // TODO: keep the model between tests when possible
 | 
			
		||||
        llama_context_params lparams = inst.to_llama_params();
 | 
			
		||||
 | 
			
		||||
        llama_model * lmodel  = llama_load_model_from_file(inst.model.c_str(), lparams);
 | 
			
		||||
        if (lmodel == NULL) {
 | 
			
		||||
            fprintf(stderr, "%s: error: failed to load model '%s'\n", __func__, inst.model.c_str());
 | 
			
		||||
            return 1;
 | 
			
		||||
        }
 | 
			
		||||
 | 
			
		||||
        llama_context * ctx = llama_new_context_with_model(lmodel, lparams);
 | 
			
		||||
        if (ctx == NULL) {
 | 
			
		||||
            fprintf(stderr, "%s: error: failed to create context with model '%s'\n", __func__, inst.model.c_str());
 | 
			
		||||
            llama_free_model(lmodel);
 | 
			
		||||
            return 1;
 | 
			
		||||
        }
 | 
			
		||||
 | 
			
		||||
        test t(inst, lmodel, ctx);
 | 
			
		||||
 | 
			
		||||
        // warmup run
 | 
			
		||||
        test_gen(ctx, 1, 0, t.n_threads);
 | 
			
		||||
 | 
			
		||||
        for (int i = 0; i < params.reps; i++) {
 | 
			
		||||
            uint64_t t_start = get_time_ns();
 | 
			
		||||
            if (t.n_prompt > 0) {
 | 
			
		||||
                test_prompt(ctx, t.n_prompt, 0, t.n_batch, t.n_threads);
 | 
			
		||||
            }
 | 
			
		||||
            if (t.n_gen > 0) {
 | 
			
		||||
                test_gen(ctx, t.n_gen, t.n_prompt, t.n_threads);
 | 
			
		||||
            }
 | 
			
		||||
            uint64_t t_ns = get_time_ns() - t_start;
 | 
			
		||||
            t.samples_ns.push_back(t_ns);
 | 
			
		||||
        }
 | 
			
		||||
 | 
			
		||||
        p->print_test(t);
 | 
			
		||||
 | 
			
		||||
        llama_print_timings(ctx);
 | 
			
		||||
 | 
			
		||||
        llama_free(ctx);
 | 
			
		||||
        llama_free_model(lmodel);
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
    p->print_footer();
 | 
			
		||||
 | 
			
		||||
    llama_backend_free();
 | 
			
		||||
 | 
			
		||||
    return 0;
 | 
			
		||||
}
 | 
			
		||||
@@ -88,7 +88,7 @@ void perplexity(llama_context * ctx, const gpt_params & params) {
 | 
			
		||||
                fprintf(stderr, "%d hours ", total_seconds / (60*60));
 | 
			
		||||
                total_seconds = total_seconds % (60*60);
 | 
			
		||||
            }
 | 
			
		||||
            fprintf(stderr, "%d minutes\n", total_seconds / 60);
 | 
			
		||||
            fprintf(stderr, "%.2f minutes\n", total_seconds / 60.0);
 | 
			
		||||
        }
 | 
			
		||||
 | 
			
		||||
        // We get the logits for all the tokens in the context window (params.n_ctx)
 | 
			
		||||
 
 | 
			
		||||
							
								
								
									
										12
									
								
								ggml-cuda.cu
									
									
									
									
									
								
							
							
						
						
									
										12
									
								
								ggml-cuda.cu
									
									
									
									
									
								
							@@ -6469,3 +6469,15 @@ bool ggml_cuda_compute_forward(struct ggml_compute_params * params, struct ggml_
 | 
			
		||||
    func(tensor->src[0], tensor->src[1], tensor);
 | 
			
		||||
    return true;
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
int ggml_cuda_get_device_count() {
 | 
			
		||||
    int device_count;
 | 
			
		||||
    CUDA_CHECK(cudaGetDeviceCount(&device_count));
 | 
			
		||||
    return device_count;
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
void ggml_cuda_get_device_description(int device, char * description, size_t description_size) {
 | 
			
		||||
    cudaDeviceProp prop;
 | 
			
		||||
    CUDA_CHECK(cudaGetDeviceProperties(&prop, device));
 | 
			
		||||
    snprintf(description, description_size, "%s", prop.name);
 | 
			
		||||
}
 | 
			
		||||
 
 | 
			
		||||
							
								
								
									
										38
									
								
								ggml-cuda.h
									
									
									
									
									
								
							
							
						
						
									
										38
									
								
								ggml-cuda.h
									
									
									
									
									
								
							@@ -8,29 +8,25 @@ extern "C" {
 | 
			
		||||
 | 
			
		||||
#define GGML_CUDA_MAX_DEVICES       16
 | 
			
		||||
 | 
			
		||||
void   ggml_init_cublas(void);
 | 
			
		||||
void   ggml_cuda_set_tensor_split(const float * tensor_split);
 | 
			
		||||
GGML_API void   ggml_init_cublas(void);
 | 
			
		||||
GGML_API void * ggml_cuda_host_malloc(size_t size);
 | 
			
		||||
GGML_API void   ggml_cuda_host_free(void * ptr);
 | 
			
		||||
 | 
			
		||||
void   ggml_cuda_mul(const struct ggml_tensor * src0, const struct ggml_tensor * src1, struct ggml_tensor * dst);
 | 
			
		||||
bool   ggml_cuda_can_mul_mat(const struct ggml_tensor * src0, const struct ggml_tensor * src1, struct ggml_tensor * dst);
 | 
			
		||||
size_t ggml_cuda_mul_mat_get_wsize(const struct ggml_tensor * src0, const struct ggml_tensor * src1, struct ggml_tensor * dst);
 | 
			
		||||
void   ggml_cuda_mul_mat(const struct ggml_tensor * src0, const struct ggml_tensor * src1, struct ggml_tensor * dst, void * wdata, size_t wsize);
 | 
			
		||||
GGML_API bool   ggml_cuda_can_mul_mat(const struct ggml_tensor * src0, const struct ggml_tensor * src1, struct ggml_tensor * dst);
 | 
			
		||||
GGML_API void   ggml_cuda_set_tensor_split(const float * tensor_split);
 | 
			
		||||
GGML_API void   ggml_cuda_transform_tensor(void * data, struct ggml_tensor * tensor);
 | 
			
		||||
GGML_API void   ggml_cuda_free_data(struct ggml_tensor * tensor);
 | 
			
		||||
GGML_API void   ggml_cuda_assign_buffers(struct ggml_tensor * tensor);
 | 
			
		||||
GGML_API void   ggml_cuda_assign_buffers_no_scratch(struct ggml_tensor * tensor);
 | 
			
		||||
GGML_API void   ggml_cuda_assign_buffers_force_inplace(struct ggml_tensor * tensor);
 | 
			
		||||
GGML_API void   ggml_cuda_set_main_device(int main_device);
 | 
			
		||||
GGML_API void   ggml_cuda_set_mul_mat_q(bool mul_mat_q);
 | 
			
		||||
GGML_API void   ggml_cuda_set_scratch_size(size_t scratch_size);
 | 
			
		||||
GGML_API void   ggml_cuda_free_scratch(void);
 | 
			
		||||
GGML_API bool   ggml_cuda_compute_forward(struct ggml_compute_params * params, struct ggml_tensor * tensor);
 | 
			
		||||
 | 
			
		||||
// TODO: export these with GGML_API
 | 
			
		||||
void * ggml_cuda_host_malloc(size_t size);
 | 
			
		||||
void   ggml_cuda_host_free(void * ptr);
 | 
			
		||||
 | 
			
		||||
void   ggml_cuda_transform_tensor(void * data, struct ggml_tensor * tensor);
 | 
			
		||||
 | 
			
		||||
void   ggml_cuda_free_data(struct ggml_tensor * tensor);
 | 
			
		||||
void   ggml_cuda_assign_buffers(struct ggml_tensor * tensor);
 | 
			
		||||
void   ggml_cuda_assign_buffers_no_scratch(struct ggml_tensor * tensor);
 | 
			
		||||
void   ggml_cuda_assign_buffers_force_inplace(struct ggml_tensor * tensor);
 | 
			
		||||
void   ggml_cuda_set_main_device(int main_device);
 | 
			
		||||
void   ggml_cuda_set_mul_mat_q(bool mul_mat_q);
 | 
			
		||||
void   ggml_cuda_set_scratch_size(size_t scratch_size);
 | 
			
		||||
void   ggml_cuda_free_scratch(void);
 | 
			
		||||
bool   ggml_cuda_compute_forward(struct ggml_compute_params * params, struct ggml_tensor * tensor);
 | 
			
		||||
GGML_API int    ggml_cuda_get_device_count(void);
 | 
			
		||||
GGML_API void   ggml_cuda_get_device_description(int device, char * description, size_t description_size);
 | 
			
		||||
 | 
			
		||||
#ifdef  __cplusplus
 | 
			
		||||
}
 | 
			
		||||
 
 | 
			
		||||
							
								
								
									
										64
									
								
								llama.cpp
									
									
									
									
									
								
							
							
						
						
									
										64
									
								
								llama.cpp
									
									
									
									
									
								
							@@ -597,9 +597,9 @@ enum e_model {
 | 
			
		||||
static const size_t kB = 1024;
 | 
			
		||||
static const size_t MB = 1024*1024;
 | 
			
		||||
 | 
			
		||||
static const std::map<e_model, size_t> & MEM_REQ_SCRATCH0(int n_ctx)
 | 
			
		||||
static std::map<e_model, size_t> MEM_REQ_SCRATCH0(int n_ctx)
 | 
			
		||||
{
 | 
			
		||||
    static std::map<e_model, size_t> k_sizes = {
 | 
			
		||||
    std::map<e_model, size_t> k_sizes = {
 | 
			
		||||
        { MODEL_3B,   ((size_t) n_ctx / 16ull +  92ull) * MB },
 | 
			
		||||
        { MODEL_7B,   ((size_t) n_ctx / 16ull + 100ull) * MB },
 | 
			
		||||
        { MODEL_13B,  ((size_t) n_ctx / 12ull + 120ull) * MB },
 | 
			
		||||
@@ -778,6 +778,7 @@ struct llama_vocab {
 | 
			
		||||
 | 
			
		||||
struct llama_model {
 | 
			
		||||
    e_model     type  = MODEL_UNKNOWN;
 | 
			
		||||
    llama_ftype ftype = LLAMA_FTYPE_ALL_F32;
 | 
			
		||||
 | 
			
		||||
    llama_hparams hparams;
 | 
			
		||||
    llama_vocab   vocab;
 | 
			
		||||
@@ -1027,7 +1028,8 @@ struct llama_model_loader {
 | 
			
		||||
    bool use_mmap = false;
 | 
			
		||||
 | 
			
		||||
    llama_file file;
 | 
			
		||||
    llama_file_version file_version;
 | 
			
		||||
    llama_ftype ftype;
 | 
			
		||||
    llama_file_version fver;
 | 
			
		||||
 | 
			
		||||
    std::unique_ptr<llama_mmap> mapping;
 | 
			
		||||
 | 
			
		||||
@@ -1048,7 +1050,7 @@ struct llama_model_loader {
 | 
			
		||||
        n_kv      = gguf_get_n_kv(ctx_gguf);
 | 
			
		||||
        n_tensors = gguf_get_n_tensors(ctx_gguf);
 | 
			
		||||
 | 
			
		||||
        file_version = (enum llama_file_version) gguf_get_version(ctx_gguf);
 | 
			
		||||
        fver = (enum llama_file_version) gguf_get_version(ctx_gguf);
 | 
			
		||||
 | 
			
		||||
        for (int i = 0; i < n_tensors; i++) {
 | 
			
		||||
            const char * name = gguf_get_tensor_name(ctx_gguf, i);
 | 
			
		||||
@@ -1056,23 +1058,51 @@ struct llama_model_loader {
 | 
			
		||||
            n_elements += ggml_nelements(t);
 | 
			
		||||
        }
 | 
			
		||||
 | 
			
		||||
        // print meta data
 | 
			
		||||
        LLAMA_LOG_INFO("%s: loaded meta data with %d key-value pairs and %d tensors from %s (version %s)\n",
 | 
			
		||||
                __func__, n_kv, n_tensors, fname.c_str(), llama_file_version_name(fver));
 | 
			
		||||
 | 
			
		||||
        // determine file type based on the number of tensors for each quantization and print meta data
 | 
			
		||||
        // TODO: make optional
 | 
			
		||||
        {
 | 
			
		||||
            LLAMA_LOG_INFO("%s: loaded meta data with %d key-value pairs and %d tensors from %s (version %s)\n",
 | 
			
		||||
                    __func__, n_kv, n_tensors, fname.c_str(), llama_file_version_name(file_version));
 | 
			
		||||
 | 
			
		||||
            std::map<enum ggml_type, uint32_t> n_type;
 | 
			
		||||
 | 
			
		||||
            uint32_t n_type_max = 0;
 | 
			
		||||
            enum ggml_type type_max = GGML_TYPE_F32;
 | 
			
		||||
 | 
			
		||||
            for (int i = 0; i < n_tensors; i++) {
 | 
			
		||||
                const char * name = gguf_get_tensor_name(ctx_gguf, i);
 | 
			
		||||
                struct ggml_tensor * meta = ggml_get_tensor(ctx_meta, name);
 | 
			
		||||
 | 
			
		||||
                n_type[meta->type]++;
 | 
			
		||||
 | 
			
		||||
                if (n_type_max < n_type[meta->type]) {
 | 
			
		||||
                    n_type_max = n_type[meta->type];
 | 
			
		||||
                    type_max   = meta->type;
 | 
			
		||||
                }
 | 
			
		||||
 | 
			
		||||
                LLAMA_LOG_INFO("%s: - tensor %4d: %32s %-8s [ %s ]\n", __func__, i, name, ggml_type_name(meta->type), llama_format_tensor_shape(meta).c_str());
 | 
			
		||||
            }
 | 
			
		||||
 | 
			
		||||
            switch (type_max) {
 | 
			
		||||
                case GGML_TYPE_F32:  ftype = LLAMA_FTYPE_ALL_F32;       break;
 | 
			
		||||
                case GGML_TYPE_F16:  ftype = LLAMA_FTYPE_MOSTLY_F16;    break;
 | 
			
		||||
                case GGML_TYPE_Q4_0: ftype = LLAMA_FTYPE_MOSTLY_Q4_0;   break;
 | 
			
		||||
                case GGML_TYPE_Q4_1: ftype = LLAMA_FTYPE_MOSTLY_Q4_1;   break;
 | 
			
		||||
                case GGML_TYPE_Q5_0: ftype = LLAMA_FTYPE_MOSTLY_Q5_0;   break;
 | 
			
		||||
                case GGML_TYPE_Q5_1: ftype = LLAMA_FTYPE_MOSTLY_Q5_1;   break;
 | 
			
		||||
                case GGML_TYPE_Q8_0: ftype = LLAMA_FTYPE_MOSTLY_Q8_0;   break;
 | 
			
		||||
                case GGML_TYPE_Q2_K: ftype = LLAMA_FTYPE_MOSTLY_Q2_K;   break;
 | 
			
		||||
                case GGML_TYPE_Q3_K: ftype = LLAMA_FTYPE_MOSTLY_Q3_K_M; break;
 | 
			
		||||
                case GGML_TYPE_Q4_K: ftype = LLAMA_FTYPE_MOSTLY_Q4_K_M; break;
 | 
			
		||||
                case GGML_TYPE_Q5_K: ftype = LLAMA_FTYPE_MOSTLY_Q5_K_M; break;
 | 
			
		||||
                case GGML_TYPE_Q6_K: ftype = LLAMA_FTYPE_MOSTLY_Q6_K;   break;
 | 
			
		||||
                default:
 | 
			
		||||
                     {
 | 
			
		||||
                         LLAMA_LOG_WARN("%s: unknown type %s\n", __func__, ggml_type_name(type_max));
 | 
			
		||||
                         ftype = LLAMA_FTYPE_ALL_F32;
 | 
			
		||||
                     } break;
 | 
			
		||||
            }
 | 
			
		||||
 | 
			
		||||
            for (int i = 0; i < n_kv; i++) {
 | 
			
		||||
                const char * name         = gguf_get_key(ctx_gguf, i);
 | 
			
		||||
                const enum gguf_type type = gguf_get_kv_type(ctx_gguf, i);
 | 
			
		||||
@@ -1275,7 +1305,7 @@ struct llama_model_loader {
 | 
			
		||||
// load LLaMA models
 | 
			
		||||
//
 | 
			
		||||
 | 
			
		||||
static const char * llama_ftype_name(enum llama_ftype ftype) {
 | 
			
		||||
const char * llama_model_ftype_name(enum llama_ftype ftype) {
 | 
			
		||||
    switch (ftype) {
 | 
			
		||||
        case LLAMA_FTYPE_ALL_F32:     return "all F32";
 | 
			
		||||
        case LLAMA_FTYPE_MOSTLY_F16:  return "mostly F16";
 | 
			
		||||
@@ -1403,6 +1433,8 @@ static void llama_model_load_internal(
 | 
			
		||||
                } break;
 | 
			
		||||
        }
 | 
			
		||||
 | 
			
		||||
        model.ftype = ml->ftype;
 | 
			
		||||
 | 
			
		||||
        hparams.n_ctx = n_ctx;
 | 
			
		||||
 | 
			
		||||
        // LLaMAv2
 | 
			
		||||
@@ -1456,7 +1488,7 @@ static void llama_model_load_internal(
 | 
			
		||||
 | 
			
		||||
    {
 | 
			
		||||
        // hparams
 | 
			
		||||
        LLAMA_LOG_INFO("%s: format       = %s\n",     __func__, llama_file_version_name(ml->file_version));
 | 
			
		||||
        LLAMA_LOG_INFO("%s: format       = %s\n",     __func__, llama_file_version_name(ml->fver));
 | 
			
		||||
        LLAMA_LOG_INFO("%s: arch         = %s\n",     __func__, general_arch.c_str());
 | 
			
		||||
        LLAMA_LOG_INFO("%s: n_vocab      = %u\n",     __func__, hparams.n_vocab);
 | 
			
		||||
        LLAMA_LOG_INFO("%s: n_ctx_train  = %u\n",     __func__, hparams.n_ctx_train);
 | 
			
		||||
@@ -1472,6 +1504,7 @@ static void llama_model_load_internal(
 | 
			
		||||
        LLAMA_LOG_INFO("%s: freq_base    = %.1f\n",   __func__, hparams.rope_freq_base);
 | 
			
		||||
        LLAMA_LOG_INFO("%s: freq_scale   = %g\n",     __func__, hparams.rope_freq_scale);
 | 
			
		||||
        LLAMA_LOG_INFO("%s: model type   = %s\n",     __func__, llama_model_type_name(model.type));
 | 
			
		||||
        LLAMA_LOG_INFO("%s: model ftype  = %s\n",     __func__, llama_model_ftype_name(model.ftype));
 | 
			
		||||
        LLAMA_LOG_INFO("%s: model size   = %.2f B\n", __func__, ml->n_elements*1e-9);
 | 
			
		||||
 | 
			
		||||
        // general kv
 | 
			
		||||
@@ -2142,6 +2175,13 @@ static bool llama_eval_internal(
 | 
			
		||||
 | 
			
		||||
    GGML_ASSERT((!tokens && embd) || (tokens && !embd)); // NOLINT
 | 
			
		||||
 | 
			
		||||
    GGML_ASSERT(n_tokens > 0);
 | 
			
		||||
    GGML_ASSERT(n_past >= 0);
 | 
			
		||||
    GGML_ASSERT(n_threads > 0);
 | 
			
		||||
    // TODO: keep the values of n_batch and n_ctx
 | 
			
		||||
    // GGML_ASSERT(n_tokens <= n_batch);
 | 
			
		||||
    // GGML_ASSERT(n_past + n_tokens <= n_ctx);
 | 
			
		||||
 | 
			
		||||
    const int64_t t_start_us = ggml_time_us();
 | 
			
		||||
 | 
			
		||||
#ifdef GGML_USE_MPI
 | 
			
		||||
@@ -4915,6 +4955,10 @@ int llama_get_vocab(
 | 
			
		||||
    return llama_get_vocab_from_model(&ctx->model, strings, scores, capacity);
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
int llama_model_type(const struct llama_model * model, char * buf, size_t buf_size) {
 | 
			
		||||
    return snprintf(buf, buf_size, "LLaMA %s %s", llama_model_type_name(model->type), llama_model_ftype_name(model->ftype));
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
int llama_get_vocab_from_model(
 | 
			
		||||
        const struct llama_model * model,
 | 
			
		||||
        const char * * strings,
 | 
			
		||||
 
 | 
			
		||||
							
								
								
									
										3
									
								
								llama.h
									
									
									
									
									
								
							
							
						
						
									
										3
									
								
								llama.h
									
									
									
									
									
								
							@@ -235,6 +235,9 @@ extern "C" {
 | 
			
		||||
    LLAMA_API int llama_n_ctx_from_model  (const struct llama_model * model);
 | 
			
		||||
    LLAMA_API int llama_n_embd_from_model (const struct llama_model * model);
 | 
			
		||||
 | 
			
		||||
    // Get a string describing the model type
 | 
			
		||||
    LLAMA_API int llama_model_type(const struct llama_model * model, char * buf, size_t buf_size);
 | 
			
		||||
 | 
			
		||||
    // Returns 0 on success
 | 
			
		||||
    LLAMA_API int llama_model_quantize(
 | 
			
		||||
            const char * fname_inp,
 | 
			
		||||
 
 | 
			
		||||
		Reference in New Issue
	
	Block a user