diff --git a/tests/test-model-random.cpp b/tests/test-model-random.cpp index a03ef1a4c4..a8e6847000 100644 --- a/tests/test-model-random.cpp +++ b/tests/test-model-random.cpp @@ -65,6 +65,7 @@ struct random_tensor { for (int64_t d : shape) { prod *= d; } + GGML_ASSERT(prod != 0); return ggml_row_size(type, prod); } @@ -266,8 +267,20 @@ struct model_variant { tensors(other.tensors), metadata(other.metadata) {} + void add_tensor(const std::string & name, const std::vector & shape, float gain = 1.0f) { + // ref: https://github.com/pytorch/pytorch/blob/134179474539648ba7dee1317959529fbd0e7f89/torch/nn/init.py#L515-L516 + const auto init_kaiming_uniform = [gain](uint32_t fan_in) { + const float std = gain * std::sqrt(fan_in); + const float bound = std::sqrt(3.0f) * std; + + return std::uniform_real_distribution(-bound, bound); + }; + + tensors.push_back(random_tensor(name, shape, init_kaiming_uniform(shape[0]))); + } + void add_tensor(const std::string & name, const std::vector & shape, - const std::function & distribution = std::normal_distribution()) { + const std::function & distribution) { tensors.push_back(random_tensor(name, shape, distribution)); } @@ -299,7 +312,7 @@ struct model_variant { size_t total_size = 0; for (const auto & t : tensors) { - total_size += t.n_bytes() + ggml_tensor_overhead(); + total_size += GGML_PAD(t.n_bytes() + ggml_tensor_overhead(), GGML_MEM_ALIGN); } ggml_init_params init_params = { @@ -356,6 +369,11 @@ struct model_variant { m.add_kv(LLM_KV_TOKENIZER_TOKEN_TYPE, vocab_types); }; + // don't actually use bias + const auto init_bias = []() { + return 0.0f; + }; + // TODO: fill the variants // TODO: how to make the variants more modular? switch (arch) { @@ -591,12 +609,12 @@ struct model_variant { cur.add_tensor(tn(LLM_TENSOR_SSM_IN, "weight", i), { n_embd, 2 * d_inner }); cur.add_tensor(tn(LLM_TENSOR_SSM_CONV1D, "weight", i), { d_conv, d_inner }); - cur.add_tensor(tn(LLM_TENSOR_SSM_CONV1D, "bias", i), { d_inner }); + cur.add_tensor(tn(LLM_TENSOR_SSM_CONV1D, "bias", i), { d_inner }, init_bias); cur.add_tensor(tn(LLM_TENSOR_SSM_X, "weight", i), { d_inner, dt_rank + 2 * d_state }); cur.add_tensor(tn(LLM_TENSOR_SSM_DT, "weight", i), { dt_rank, d_inner }); - cur.add_tensor(tn(LLM_TENSOR_SSM_DT, "bias", i), { d_inner }); + cur.add_tensor(tn(LLM_TENSOR_SSM_DT, "bias", i), { d_inner }, init_bias); // no "weight" suffix for these cur.add_tensor(tn(LLM_TENSOR_SSM_A, i), { d_state, d_inner }, init_A_S4D); @@ -674,19 +692,19 @@ struct model_variant { // Block 0, LN0 cur.add_tensor(tn(LLM_TENSOR_TOKEN_EMBD_NORM, "weight"), {n_embd}); - cur.add_tensor(tn(LLM_TENSOR_TOKEN_EMBD_NORM, "bias"), {n_embd}); + cur.add_tensor(tn(LLM_TENSOR_TOKEN_EMBD_NORM, "bias"), {n_embd}, init_bias); // output cur.add_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}); - cur.add_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "bias"), {n_embd}); + cur.add_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "bias"), {n_embd}, init_bias); cur.add_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}); for (uint32_t i = 0; i < n_layer; ++i) { cur.add_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}); - cur.add_tensor(tn(LLM_TENSOR_ATTN_NORM, "bias", i), {n_embd}); + cur.add_tensor(tn(LLM_TENSOR_ATTN_NORM, "bias", i), {n_embd}, init_bias); cur.add_tensor(tn(LLM_TENSOR_ATTN_NORM_2, "weight", i), {n_embd}); - cur.add_tensor(tn(LLM_TENSOR_ATTN_NORM_2, "bias", i), {n_embd}); + cur.add_tensor(tn(LLM_TENSOR_ATTN_NORM_2, "bias", i), {n_embd}, init_bias); cur.add_tensor(tn(LLM_TENSOR_TIME_MIX_W0, "weight", i), {n_embd}); cur.add_tensor(tn(LLM_TENSOR_TIME_MIX_W1, "weight", i), {n_embd, n_lora_decay}); @@ -721,7 +739,7 @@ struct model_variant { cur.add_tensor(tn(LLM_TENSOR_TIME_MIX_RECEPTANCE, "weight", i), {attn_hidden_size, n_embd}); cur.add_tensor(tn(LLM_TENSOR_TIME_MIX_LN, "weight", i), {n_embd}); - cur.add_tensor(tn(LLM_TENSOR_TIME_MIX_LN, "bias", i), {n_embd}); + cur.add_tensor(tn(LLM_TENSOR_TIME_MIX_LN, "bias", i), {n_embd}, init_bias); cur.add_tensor(tn(LLM_TENSOR_TIME_MIX_OUTPUT, "weight", i), {n_embd, attn_hidden_size}); cur.add_tensor(tn(LLM_TENSOR_CHANNEL_MIX_LERP_K, "weight", i), {n_embd, 1, 1}); @@ -1036,7 +1054,7 @@ int main(int argc, char ** argv) { for (llama_seq_id seq_id = 0; seq_id < n_seq_max; ++seq_id) { float err = ref_outputs[seq_id].validate_batch(ctx, batch, seq_id); if (!isfinite(err) || err > 1.0f / 1024.0f) { - fprintf(stderr, "Error for seq_id %i is %f\n", seq_id, err); + fprintf(stderr, "Error for seq_id %i is %f at n_past=%i\n", seq_id, err, seq_id_n_past[seq_id]); valid[seq_id] = false; } }