model : Apertus model implementation (#15852)

* First attempt

* No permute during convert (fixes qk tensors), proper norm application.

* RoPE = NeoX

* Coherence!

* Migrate xielu params from tensors to hyperparameters

* Simple CUDA kernel

* Revert stupid LLM refactorings

* Chat template support

* configchecker / flake8 errors

* Reorder unary.cu

* I do conclude that LLMs are, in fact, stupid.

* Fix after merge

* Final newline

* Make xIELU an UNARY_OP

* Final newline

* Correctly account for parameter shift

* Argh.

* Update ggml/src/ggml-cpu/unary-ops.cpp

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>

* Refactor: remove unused methods, inline and factorize softplus, add const modifiers

* Revert CUDA changes, implement xIELU as a separate OP

* Pesky newline

* Add float2half / half2float for F16 inputs/outputs

* CUDA variants, attempt 2

* Actually, attempt 3

* Update ggml/src/ggml-cuda/unary.cu

Co-authored-by: Johannes Gäßler <johannesg@5d6.de>

* Missing convert header

* Proper formula and reference for xIELU in the comments.

* Modify unary-ops.cpp to add the functor-based logic besides the template system to retain optimizations

* Apply suggestions from code review

Co-authored-by: Sigbjørn Skjæret <sigbjorn.skjaeret@scala.com>

* Add tensor mappings for Apertus to global list instead

* Fix lazy on scalars

* Update ggml/src/ggml-cuda/unary.cu

Co-authored-by: Johannes Gäßler <johannesg@5d6.de>

* Add comment about the constraints on positive/negative alpha

* Change `softplus` to `ggml_softplus`

---------

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
Co-authored-by: Johannes Gäßler <johannesg@5d6.de>
Co-authored-by: Sigbjørn Skjæret <sigbjorn.skjaeret@scala.com>
This commit is contained in:
Piotr Wilkin (ilintar)
2025-10-02 19:43:22 +02:00
committed by GitHub
parent 91a2a56556
commit 34fcc5a4ac
27 changed files with 1082 additions and 7 deletions

View File

@@ -1143,10 +1143,10 @@ static const char * GGML_UNARY_OP_NAME[GGML_UNARY_OP_COUNT] = {
"HARDSIGMOID",
"EXP",
"GELU_ERF",
"XIELU",
};
static_assert(GGML_UNARY_OP_COUNT == 15, "GGML_UNARY_OP_COUNT != 15");
static_assert(GGML_UNARY_OP_COUNT == 16, "GGML_UNARY_OP_COUNT != 16");
static const char * GGML_GLU_OP_NAME[GGML_GLU_OP_COUNT] = {
"REGLU",
@@ -2652,6 +2652,29 @@ struct ggml_tensor * ggml_silu_inplace(
return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_SILU);
}
// ggml_xielu
struct ggml_tensor * ggml_xielu(
struct ggml_context * ctx,
struct ggml_tensor * a,
float alpha_n,
float alpha_p,
float beta,
float eps) {
struct ggml_tensor * result = ggml_dup_tensor(ctx, a);
ggml_set_op_params_i32(result, 0, (int32_t) GGML_UNARY_OP_XIELU);
ggml_set_op_params_f32(result, 1, beta + ggml_softplus(alpha_n));
ggml_set_op_params_f32(result, 2, ggml_softplus(alpha_p));
ggml_set_op_params_f32(result, 3, beta);
ggml_set_op_params_f32(result, 4, eps);
result->op = GGML_OP_UNARY;
result->src[0] = a;
return result;
}
// ggml_silu_back
struct ggml_tensor * ggml_silu_back(