mirror of
https://github.com/ggml-org/llama.cpp.git
synced 2025-10-27 08:21:30 +00:00
model : Apertus model implementation (#15852)
* First attempt * No permute during convert (fixes qk tensors), proper norm application. * RoPE = NeoX * Coherence! * Migrate xielu params from tensors to hyperparameters * Simple CUDA kernel * Revert stupid LLM refactorings * Chat template support * configchecker / flake8 errors * Reorder unary.cu * I do conclude that LLMs are, in fact, stupid. * Fix after merge * Final newline * Make xIELU an UNARY_OP * Final newline * Correctly account for parameter shift * Argh. * Update ggml/src/ggml-cpu/unary-ops.cpp Co-authored-by: Georgi Gerganov <ggerganov@gmail.com> * Refactor: remove unused methods, inline and factorize softplus, add const modifiers * Revert CUDA changes, implement xIELU as a separate OP * Pesky newline * Add float2half / half2float for F16 inputs/outputs * CUDA variants, attempt 2 * Actually, attempt 3 * Update ggml/src/ggml-cuda/unary.cu Co-authored-by: Johannes Gäßler <johannesg@5d6.de> * Missing convert header * Proper formula and reference for xIELU in the comments. * Modify unary-ops.cpp to add the functor-based logic besides the template system to retain optimizations * Apply suggestions from code review Co-authored-by: Sigbjørn Skjæret <sigbjorn.skjaeret@scala.com> * Add tensor mappings for Apertus to global list instead * Fix lazy on scalars * Update ggml/src/ggml-cuda/unary.cu Co-authored-by: Johannes Gäßler <johannesg@5d6.de> * Add comment about the constraints on positive/negative alpha * Change `softplus` to `ggml_softplus` --------- Co-authored-by: Georgi Gerganov <ggerganov@gmail.com> Co-authored-by: Johannes Gäßler <johannesg@5d6.de> Co-authored-by: Sigbjørn Skjæret <sigbjorn.skjaeret@scala.com>
This commit is contained in:
committed by
GitHub
parent
91a2a56556
commit
34fcc5a4ac
@@ -8945,6 +8945,43 @@ class SmallThinkerModel(TextModel):
|
||||
raise ValueError(f"Unprocessed experts: {experts}")
|
||||
|
||||
|
||||
@ModelBase.register("ApertusForCausalLM")
|
||||
class ApertusModel(LlamaModel):
|
||||
model_arch = gguf.MODEL_ARCH.APERTUS
|
||||
undo_permute = False
|
||||
|
||||
_alpha_n = {}
|
||||
_alpha_p = {}
|
||||
_beta = {}
|
||||
_eps = {}
|
||||
|
||||
def modify_tensors(self, data_torch, name, bid):
|
||||
# Handle xIELU activation parameters
|
||||
n_layers = self.hparams["num_hidden_layers"]
|
||||
if name.endswith(".act_fn.alpha_n"):
|
||||
self._alpha_n[bid] = data_torch.to("cpu").float().item()
|
||||
if (len(self._alpha_n) == n_layers):
|
||||
self.gguf_writer.add_xielu_alpha_n([self._alpha_n[k] for k in sorted(self._alpha_n)])
|
||||
return []
|
||||
if name.endswith(".act_fn.alpha_p"):
|
||||
self._alpha_p[bid] = data_torch.to("cpu").float().item()
|
||||
if (len(self._alpha_p) == n_layers):
|
||||
self.gguf_writer.add_xielu_alpha_p([self._alpha_p[k] for k in sorted(self._alpha_p)])
|
||||
return []
|
||||
if name.endswith(".act_fn.beta"):
|
||||
self._beta[bid] = data_torch.to("cpu").float().item()
|
||||
if (len(self._beta) == n_layers):
|
||||
self.gguf_writer.add_xielu_beta([self._beta[k] for k in sorted(self._beta)])
|
||||
return []
|
||||
if name.endswith(".act_fn.eps"):
|
||||
self._eps[bid] = data_torch.to("cpu").float().item()
|
||||
if (len(self._eps) == n_layers):
|
||||
self.gguf_writer.add_xielu_eps([self._eps[k] for k in sorted(self._eps)])
|
||||
return []
|
||||
|
||||
return super().modify_tensors(data_torch, name, bid)
|
||||
|
||||
|
||||
class MistralModel(LlamaModel):
|
||||
model_arch = gguf.MODEL_ARCH.LLAMA
|
||||
model_name = "Mistral"
|
||||
@@ -9112,7 +9149,7 @@ class LazyTorchTensor(gguf.LazyBase):
|
||||
def from_safetensors_slice(cls, st_slice: Any) -> Tensor:
|
||||
dtype = cls._dtype_str_map[st_slice.get_dtype()]
|
||||
shape: tuple[int, ...] = tuple(st_slice.get_shape())
|
||||
lazy = cls(meta=cls.meta_with_dtype_and_shape(dtype, shape), args=(st_slice,), func=lambda s: s[:])
|
||||
lazy = cls(meta=cls.meta_with_dtype_and_shape(dtype, shape), args=(st_slice,), func=lambda s: s[...] if len(s.get_shape()) == 0 else s[:])
|
||||
return cast(torch.Tensor, lazy)
|
||||
|
||||
@classmethod
|
||||
|
||||
Reference in New Issue
Block a user