mirror of
https://github.com/ggml-org/llama.cpp.git
synced 2025-11-02 09:12:03 +00:00
convert : better logging of partially reflinkable tensors
This commit is contained in:
@@ -201,7 +201,7 @@ class GGUFWriter:
|
||||
assert len(filenames) == len(self.tensors)
|
||||
for name, tensors in zip(filenames, self.tensors):
|
||||
total_size = sum(ti.nbytes for ti in tensors.values())
|
||||
reflinkable_size = count_reflinkable_size(ti.tensor for ti in tensors.values()) if self.use_reflinks else 0
|
||||
reflinkable_size = count_reflinkable_size((name, ti.tensor) for name, ti in tensors.items()) if self.use_reflinks else 0
|
||||
logger.info(f"{name}: n_tensors = {len(tensors)}, total_size = {GGUFWriter.format_n_bytes_to_str(total_size)}{', reflinked = ' + GGUFWriter.format_n_bytes_to_str(total_size - reflinkable_size) if self.use_reflinks else ''}")
|
||||
|
||||
if self.dry_run:
|
||||
|
||||
@@ -278,17 +278,22 @@ def best_extra_offset(t: np.ndarray | LazyNumpyTensor | None, current_offset: in
|
||||
return best_offset
|
||||
|
||||
|
||||
def count_reflinkable_size(tensors: Iterable[np.ndarray | LazyNumpyTensor | None]) -> int:
|
||||
def count_reflinkable_size(tensors: Iterable[tuple[str, np.ndarray | LazyNumpyTensor | None]]) -> int:
|
||||
if not hasattr(os, "copy_file_range"):
|
||||
return 0
|
||||
|
||||
size = 0
|
||||
for t in tensors:
|
||||
for name, t in tensors:
|
||||
if isinstance(t, LazyNumpyTensor) and len(t._ranges) > 0:
|
||||
align_offset = best_extra_offset(t, 0)
|
||||
misaligned = 0
|
||||
for range in t._ranges:
|
||||
if range.block_size > 0 and range.offset % range.block_size == align_offset:
|
||||
size += range.size
|
||||
if range.block_size > 0:
|
||||
if range.offset % range.block_size == align_offset:
|
||||
size += range.size
|
||||
else:
|
||||
misaligned += 1
|
||||
if misaligned > 0:
|
||||
logger.debug(f"{name} misaligned for reflinking, fallback to copy for {misaligned} of {len(t._ranges)} parts")
|
||||
return size
|
||||
|
||||
|
||||
@@ -317,7 +322,7 @@ def copy_tensor_ranges(t: LazyNumpyTensor, fout: BufferedWriter):
|
||||
|
||||
has_copy_file_range = hasattr(os, "copy_file_range")
|
||||
|
||||
for i, r in enumerate(ranges):
|
||||
for r in ranges:
|
||||
src = src_files[r.filename]
|
||||
if has_copy_file_range:
|
||||
if r.block_size > 0 and (r.offset % r.block_size) == (start_offset % r.block_size):
|
||||
@@ -354,8 +359,6 @@ def copy_tensor_ranges(t: LazyNumpyTensor, fout: BufferedWriter):
|
||||
os.copy_file_range(src.fileno(), fout.fileno(), size, offset_src, dst_offset)
|
||||
dst_offset += r.size - extra_size
|
||||
else:
|
||||
if r.block_size > 0:
|
||||
logger.debug(f"misaligned for reflinking, falling back to copy ({i}/{len(ranges)})")
|
||||
# not trying to use reflinks, but still using os.copy_file_range for speed
|
||||
os.copy_file_range(src.fileno(), fout.fileno(), r.size, r.offset, dst_offset)
|
||||
dst_offset += r.size
|
||||
|
||||
Reference in New Issue
Block a user