mirror of
				https://github.com/ggml-org/llama.cpp.git
				synced 2025-10-31 08:51:55 +00:00 
			
		
		
		
	llama : add MiniCPM support (#5346)
* support minicpm arch. * fix tab/space typo. * convert minicpm model via convert-hf-gguf.py * try to make tokenizer work * fix bug for quantize minicpm * fix for flake8 lint * remove convert-minicpm.py * fix for editorconfig * correct minicpm model type (size) * constants expanded for minicpm * Minor change of the constant names for minicpm
This commit is contained in:
		
							
								
								
									
										190
									
								
								llama.cpp
									
									
									
									
									
								
							
							
						
						
									
										190
									
								
								llama.cpp
									
									
									
									
									
								
							| @@ -205,6 +205,7 @@ enum llm_arch { | ||||
|     LLM_ARCH_CODESHELL, | ||||
|     LLM_ARCH_ORION, | ||||
|     LLM_ARCH_INTERNLM2, | ||||
|     LLM_ARCH_MINICPM, | ||||
|     LLM_ARCH_UNKNOWN, | ||||
| }; | ||||
|  | ||||
| @@ -228,6 +229,7 @@ static std::map<llm_arch, const char *> LLM_ARCH_NAMES = { | ||||
|     { LLM_ARCH_CODESHELL,       "codeshell" }, | ||||
|     { LLM_ARCH_ORION,           "orion"     }, | ||||
|     { LLM_ARCH_INTERNLM2,       "internlm2" }, | ||||
|     { LLM_ARCH_MINICPM,         "minicpm"   }, | ||||
| }; | ||||
|  | ||||
| enum llm_kv { | ||||
| @@ -690,6 +692,29 @@ static std::map<llm_arch, std::map<llm_tensor, std::string>> LLM_TENSOR_NAMES = | ||||
|             { LLM_TENSOR_FFN_UP,          "blk.%d.ffn_up" }, | ||||
|         }, | ||||
|     }, | ||||
|     { | ||||
|         LLM_ARCH_MINICPM, | ||||
|         { | ||||
|             { LLM_TENSOR_TOKEN_EMBD,      "token_embd" }, | ||||
|             { LLM_TENSOR_OUTPUT_NORM,     "output_norm" }, | ||||
|             { LLM_TENSOR_OUTPUT,          "output" }, | ||||
|             { LLM_TENSOR_ROPE_FREQS,      "rope_freqs" }, | ||||
|             { LLM_TENSOR_ATTN_NORM,       "blk.%d.attn_norm" }, | ||||
|             { LLM_TENSOR_ATTN_Q,          "blk.%d.attn_q" }, | ||||
|             { LLM_TENSOR_ATTN_K,          "blk.%d.attn_k" }, | ||||
|             { LLM_TENSOR_ATTN_V,          "blk.%d.attn_v" }, | ||||
|             { LLM_TENSOR_ATTN_OUT,        "blk.%d.attn_output" }, | ||||
|             { LLM_TENSOR_ATTN_ROT_EMBD,   "blk.%d.attn_rot_embd" }, | ||||
|             { LLM_TENSOR_FFN_GATE_INP,    "blk.%d.ffn_gate_inp" }, | ||||
|             { LLM_TENSOR_FFN_NORM,        "blk.%d.ffn_norm" }, | ||||
|             { LLM_TENSOR_FFN_GATE,        "blk.%d.ffn_gate" }, | ||||
|             { LLM_TENSOR_FFN_DOWN,        "blk.%d.ffn_down" }, | ||||
|             { LLM_TENSOR_FFN_UP,          "blk.%d.ffn_up" }, | ||||
|             { LLM_TENSOR_FFN_GATE_EXP,    "blk.%d.ffn_gate.%d" }, | ||||
|             { LLM_TENSOR_FFN_DOWN_EXP,    "blk.%d.ffn_down.%d" }, | ||||
|             { LLM_TENSOR_FFN_UP_EXP,      "blk.%d.ffn_up.%d" }, | ||||
|         }, | ||||
|     }, | ||||
|     { | ||||
|         LLM_ARCH_UNKNOWN, | ||||
|         { | ||||
| @@ -1390,6 +1415,7 @@ enum e_model { | ||||
|     MODEL_UNKNOWN, | ||||
|     MODEL_0_5B, | ||||
|     MODEL_1B, | ||||
|     MODEL_2B, | ||||
|     MODEL_3B, | ||||
|     MODEL_4B, | ||||
|     MODEL_7B, | ||||
| @@ -2748,6 +2774,7 @@ static std::string llama_model_ftype_name(llama_ftype ftype) { | ||||
| static const char * llama_model_type_name(e_model type) { | ||||
|     switch (type) { | ||||
|         case MODEL_1B:     return "1B"; | ||||
|         case MODEL_2B:     return "2B"; | ||||
|         case MODEL_3B:     return "3B"; | ||||
|         case MODEL_7B:     return "7B"; | ||||
|         case MODEL_8B:     return "8B"; | ||||
| @@ -2887,6 +2914,13 @@ static void llm_load_hparams( | ||||
|                     default: model.type = e_model::MODEL_UNKNOWN; | ||||
|                 } | ||||
|             } break; | ||||
|         case LLM_ARCH_MINICPM: | ||||
|             { | ||||
|                 switch (hparams.n_layer) { | ||||
|                     case 40: model.type = e_model::MODEL_2B; break; | ||||
|                     default: model.type = e_model::MODEL_UNKNOWN; | ||||
|                 } | ||||
|             } break; | ||||
|         case LLM_ARCH_FALCON: | ||||
|             { | ||||
|                 ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps); | ||||
| @@ -3524,13 +3558,16 @@ static bool llm_load_tensors( | ||||
|         switch (model.arch) { | ||||
|             case LLM_ARCH_LLAMA: | ||||
|             case LLM_ARCH_REFACT: | ||||
|             case LLM_ARCH_MINICPM: | ||||
|                 { | ||||
|                     model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}); | ||||
|  | ||||
|                     // output | ||||
|                     { | ||||
|                         model.output_norm = ml.create_tensor(ctx_output,       tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}); | ||||
|                         model.output      = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_OUTPUT,      "weight"), {n_embd, n_vocab}); | ||||
|                         if (model.arch != LLM_ARCH_MINICPM){ | ||||
|                             model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_OUTPUT,      "weight"), {n_embd, n_vocab}); | ||||
|                         } | ||||
|                     } | ||||
|  | ||||
|                     for (int i = 0; i < n_layer; ++i) { | ||||
| @@ -6781,6 +6818,153 @@ struct llm_build_context { | ||||
|         return gf; | ||||
|     } | ||||
|  | ||||
|     // ref: https://arxiv.org/abs/2203.03466 | ||||
|     //      https://github.com/ggerganov/llama.cpp/issues/5276#issuecomment-1925774738 | ||||
|     // based on the original build_llama() function | ||||
|     struct ggml_cgraph * build_minicpm() { | ||||
|         struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false); | ||||
|  | ||||
|         const int64_t n_embd_head = hparams.n_embd_head_v; | ||||
|         GGML_ASSERT(n_embd_head == hparams.n_embd_head_k); | ||||
|         GGML_ASSERT(n_embd_head == hparams.n_rot); | ||||
|  | ||||
|         const int64_t n_embd = hparams.n_embd; | ||||
|         //TODO: if the model varies, these parameters need to be read from the model | ||||
|         const int64_t n_embd_base = 256; | ||||
|         const float scale_embd  = 12.0f; | ||||
|         const float scale_depth = 1.4f; | ||||
|  | ||||
|         struct ggml_tensor * cur; | ||||
|         struct ggml_tensor * inpL; | ||||
|  | ||||
|         inpL = llm_build_inp_embd(ctx0, hparams, batch, model.tok_embd, lctx.inp_tokens, lctx.inp_embd, cb); | ||||
|         cb(inpL, "inp_embd", -1); | ||||
|  | ||||
|         // scale the input embeddings | ||||
|         inpL = ggml_scale(ctx0, inpL, scale_embd); | ||||
|         cb(inpL, "inp_scaled", -1); | ||||
|  | ||||
|         // inp_pos - contains the positions | ||||
|         struct ggml_tensor * inp_pos = ggml_view_1d(ctx0, lctx.inp_pos, n_tokens, 0); | ||||
|         cb(inp_pos, "inp_pos", -1); | ||||
|  | ||||
|         // KQ_mask (mask for 1 head, it will be broadcasted to all heads) | ||||
|         struct ggml_tensor * KQ_mask = ggml_view_2d(ctx0, lctx.inp_KQ_mask, n_kv, n_tokens, n_kv*ggml_type_size(lctx.inp_KQ_mask->type), 0); | ||||
|         cb(KQ_mask, "KQ_mask", -1); | ||||
|  | ||||
|         // shift the entire K-cache if needed | ||||
|         if (do_rope_shift) { | ||||
|             llm_build_k_shift(ctx0, hparams, cparams, kv_self, gf, lctx.inp_K_shift, LLM_ROPE, n_ctx, freq_base, freq_scale, cb); | ||||
|         } | ||||
|  | ||||
|         for (int il = 0; il < n_layer; ++il) { | ||||
|             struct ggml_tensor * inpSA = inpL; | ||||
|  | ||||
|             // norm | ||||
|             cur = llm_build_norm(ctx0, inpL, hparams, | ||||
|                     model.layers[il].attn_norm, NULL, | ||||
|                     LLM_NORM_RMS, cb, il); | ||||
|             cb(cur, "attn_norm", il); | ||||
|  | ||||
|             // self-attention | ||||
|             { | ||||
|                 // compute Q and K and RoPE them | ||||
|                 struct ggml_tensor * Qcur = ggml_mul_mat(ctx0, model.layers[il].wq, cur); | ||||
|                 cb(Qcur, "Qcur", il); | ||||
|                 if (model.layers[il].bq) { | ||||
|                     Qcur = ggml_add(ctx0, Qcur, model.layers[il].bq); | ||||
|                     cb(Qcur, "Qcur", il); | ||||
|                 } | ||||
|  | ||||
|                 struct ggml_tensor * Kcur = ggml_mul_mat(ctx0, model.layers[il].wk, cur); | ||||
|                 cb(Kcur, "Kcur", il); | ||||
|                 if (model.layers[il].bk) { | ||||
|                     Kcur = ggml_add(ctx0, Kcur, model.layers[il].bk); | ||||
|                     cb(Kcur, "Kcur", il); | ||||
|                 } | ||||
|  | ||||
|                 struct ggml_tensor * Vcur = ggml_mul_mat(ctx0, model.layers[il].wv, cur); | ||||
|                 cb(Vcur, "Vcur", il); | ||||
|                 if (model.layers[il].bv) { | ||||
|                     Vcur = ggml_add(ctx0, Vcur, model.layers[il].bv); | ||||
|                     cb(Vcur, "Vcur", il); | ||||
|                 } | ||||
|  | ||||
|                 Qcur = ggml_rope_custom( | ||||
|                     ctx0, ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head,    n_tokens), inp_pos, | ||||
|                     hparams.n_rot, 0, 0, n_orig_ctx, freq_base, freq_scale, | ||||
|                     ext_factor, attn_factor, beta_fast, beta_slow | ||||
|                 ); | ||||
|                 cb(Qcur, "Qcur", il); | ||||
|  | ||||
|                 Kcur = ggml_rope_custom( | ||||
|                     ctx0, ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens), inp_pos, | ||||
|                     hparams.n_rot, 0, 0, n_orig_ctx, freq_base, freq_scale, | ||||
|                     ext_factor, attn_factor, beta_fast, beta_slow | ||||
|                 ); | ||||
|                 cb(Kcur, "Kcur", il); | ||||
|  | ||||
|                 cur = llm_build_kv(ctx0, model, hparams, kv_self, gf, | ||||
|                         model.layers[il].wo, model.layers[il].bo, | ||||
|                         Kcur, Vcur, Qcur, KQ_mask, n_ctx, n_tokens, kv_head, n_kv, -1.0f, 1.0f/sqrtf(float(n_embd_head)), cb, il); | ||||
|                 cb(cur, "kqv_out", il); | ||||
|             } | ||||
|  | ||||
|             // scale_res - scale the hidden states for residual connection | ||||
|             const float scale_res = scale_depth/sqrtf(float(n_layer)); | ||||
|             cur = ggml_scale(ctx0, cur, scale_res); | ||||
|             cb(cur, "hidden_scaled", -1); | ||||
|  | ||||
|             struct ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA); | ||||
|             cb(ffn_inp, "ffn_inp", il); | ||||
|  | ||||
|             // feed-forward network | ||||
|             { | ||||
|                 cur = llm_build_norm(ctx0, ffn_inp, hparams, | ||||
|                         model.layers[il].ffn_norm, NULL, | ||||
|                         LLM_NORM_RMS, cb, il); | ||||
|                 cb(cur, "ffn_norm", il); | ||||
|  | ||||
|                 cur = llm_build_ffn(ctx0, cur, | ||||
|                         model.layers[il].ffn_up,   NULL, | ||||
|                         model.layers[il].ffn_gate, NULL, | ||||
|                         model.layers[il].ffn_down, NULL, | ||||
|                         NULL, | ||||
|                         LLM_FFN_SILU, LLM_FFN_PAR, cb, il); | ||||
|                 cb(cur, "ffn_out", il); | ||||
|             } | ||||
|  | ||||
|             // scale the hidden states for residual connection | ||||
|             cur = ggml_scale(ctx0, cur, scale_res); | ||||
|             cb(cur, "hidden_scaled_ffn", -1); | ||||
|  | ||||
|             cur = ggml_add(ctx0, cur, ffn_inp); | ||||
|             cb(cur, "l_out", il); | ||||
|  | ||||
|             // input for next layer | ||||
|             inpL = cur; | ||||
|         } | ||||
|  | ||||
|         cur = inpL; | ||||
|  | ||||
|         cur = llm_build_norm(ctx0, cur, hparams, | ||||
|                 model.output_norm, NULL, | ||||
|                 LLM_NORM_RMS, cb, -1); | ||||
|         cb(cur, "result_norm", -1); | ||||
|  | ||||
|         // lm_head scaling | ||||
|         const float scale_lmhead = float(n_embd_base)/float(n_embd); | ||||
|         cur = ggml_scale(ctx0, cur, scale_lmhead); | ||||
|         cb(cur, "lmhead_scaling", -1); | ||||
|  | ||||
|         // lm_head | ||||
|         cur = ggml_mul_mat(ctx0, model.tok_embd, cur); | ||||
|         cb(cur, "result_output", -1); | ||||
|  | ||||
|         ggml_build_forward_expand(gf, cur); | ||||
|  | ||||
|         return gf; | ||||
|     } | ||||
| }; | ||||
|  | ||||
| static struct ggml_cgraph * llama_build_graph( | ||||
| @@ -6943,6 +7127,10 @@ static struct ggml_cgraph * llama_build_graph( | ||||
|             { | ||||
|                 result = llm.build_internlm2(); | ||||
|             } break; | ||||
|         case LLM_ARCH_MINICPM: | ||||
|             { | ||||
|                 result = llm.build_minicpm(); | ||||
|             } break; | ||||
|         default: | ||||
|             GGML_ASSERT(false); | ||||
|     } | ||||
|   | ||||
		Reference in New Issue
	
	Block a user
	 runfuture
					runfuture