mirror of
				https://github.com/ggml-org/llama.cpp.git
				synced 2025-10-31 08:51:55 +00:00 
			
		
		
		
	add gptneox gguf example
This commit is contained in:
		
							
								
								
									
										812
									
								
								gptneox-main.cpp
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										812
									
								
								gptneox-main.cpp
									
									
									
									
									
										Normal file
									
								
							| @@ -0,0 +1,812 @@ | ||||
| #include "ggml.h" | ||||
|  | ||||
| #include "gptneox-common.h" | ||||
|  | ||||
| #include <cassert> | ||||
| #include <cmath> | ||||
| #include <cstdio> | ||||
| #include <cstring> | ||||
| #include <cinttypes> | ||||
| #include <fstream> | ||||
| #include <map> | ||||
| #include <string> | ||||
| #include <vector> | ||||
|  | ||||
| #if defined(_MSC_VER) | ||||
| #pragma warning(disable: 4244 4267) // possible loss of data | ||||
| #endif | ||||
|  | ||||
| // default hparams | ||||
| struct gpt_neox_hparams { | ||||
|     size_t n_merges = 0; | ||||
|     size_t n_vocab  = 0; | ||||
|     int32_t n_ctx    = 0; | ||||
|     int32_t n_embd   = 0; | ||||
|     int32_t n_head   = 0; | ||||
|     int32_t n_layer  = 0; | ||||
|     int32_t n_rot    = 0; // rotary_pct * (n_embd / n_head) | ||||
|     bool par_res = true; | ||||
|     float norm_eps = 1e-5; | ||||
| }; | ||||
|  | ||||
| struct gpt_neox_layer { | ||||
|     // pre normalization | ||||
|     struct ggml_tensor * ln_1_g; | ||||
|     struct ggml_tensor * ln_1_b; | ||||
|  | ||||
|     // attention | ||||
|     struct ggml_tensor * c_attn_attn_w; | ||||
|     struct ggml_tensor * c_attn_attn_b; | ||||
|  | ||||
|     struct ggml_tensor * c_attn_proj_w; | ||||
|     struct ggml_tensor * c_attn_proj_b; | ||||
|  | ||||
|     // post normalization | ||||
|     struct ggml_tensor * ln_2_g; | ||||
|     struct ggml_tensor * ln_2_b; | ||||
|  | ||||
|     // ff | ||||
|     struct ggml_tensor * c_mlp_fc_w; | ||||
|     struct ggml_tensor * c_mlp_fc_b; | ||||
|  | ||||
|     struct ggml_tensor * c_mlp_proj_w; | ||||
|     struct ggml_tensor * c_mlp_proj_b; | ||||
| }; | ||||
|  | ||||
| struct gpt_neox_model { | ||||
|     gpt_neox_hparams hparams; | ||||
|  | ||||
|     // normalization | ||||
|     struct ggml_tensor * ln_f_g; | ||||
|     struct ggml_tensor * ln_f_b; | ||||
|  | ||||
|     struct ggml_tensor * wte; // position embedding | ||||
|  | ||||
|     struct ggml_tensor * lmh_g; // language model head | ||||
|  | ||||
|     std::vector<gpt_neox_layer> layers; | ||||
|  | ||||
|     // key + value memory | ||||
|     struct ggml_tensor * memory_k; | ||||
|     struct ggml_tensor * memory_v; | ||||
|  | ||||
|     // | ||||
|     struct gguf_context * ggufctx; | ||||
|     struct ggml_context * ctx; | ||||
|     struct ggml_context * kvctx; | ||||
|  | ||||
|     std::map<std::string, struct ggml_tensor *> tensors; | ||||
| }; | ||||
|  | ||||
| struct ggml_tensor * get_tensor_ex( struct ggml_context * ctx, std::string name){ | ||||
|  | ||||
|     struct ggml_tensor * cur = ggml_get_tensor(ctx, name.c_str()); | ||||
|     if( cur == NULL ) { | ||||
|         fprintf(stdout, "%s: tensor '%s' not found!\n", __func__, name.c_str()); | ||||
|     } else { | ||||
| //        fprintf(stdout, "%s: n_dims = %d, name = '%s'\n", __func__, cur->n_dims, cur->name); | ||||
|     } | ||||
|  | ||||
|     return cur; | ||||
| } | ||||
|  | ||||
| // load the model's weights from a file | ||||
| bool gpt_neox_model_load(const std::string & fname, gpt_neox_model & model, gpt_vocab & vocab) { | ||||
|     printf("%s: loading model from '%s'..\n", __func__, fname.c_str()); | ||||
|  | ||||
|     model.ctx = NULL; | ||||
|  | ||||
|     struct gguf_init_params ggufparams = { | ||||
|         /*.no_alloc = */ false, | ||||
|         /*.ctx      = */ &model.ctx, | ||||
|     }; | ||||
|  | ||||
|     auto & ggufctx = model.ggufctx; | ||||
|  | ||||
|     ggufctx  = gguf_init_from_file(fname.c_str(), ggufparams); | ||||
|  | ||||
|     if (!ggufctx) { | ||||
|         fprintf(stderr, "%s: gguf_init_from_file() failed\n", __func__); | ||||
|         return false; | ||||
|     } | ||||
|  | ||||
|     fprintf(stdout, "%s: gguf version     = %d\n", __func__, gguf_get_version(ggufctx)); | ||||
|     fprintf(stdout, "%s: gguf alignment   = %zu\n", __func__, gguf_get_alignment(ggufctx)); | ||||
|     fprintf(stdout, "%s: gguf data offset = %zu\n", __func__, gguf_get_data_offset(ggufctx)); | ||||
|  | ||||
|     // print all kv | ||||
|     if( false ) | ||||
|     { | ||||
|         const int n_kv = gguf_get_n_kv(ggufctx); | ||||
|  | ||||
|         fprintf(stdout, "%s: n_kv: %d\n", __func__, n_kv); | ||||
|  | ||||
|         for (int i = 0; i < n_kv; ++i) { | ||||
|             const char * key = gguf_get_key(ggufctx, i); | ||||
|  | ||||
|             fprintf(stdout, "%s: kv[%d]: key = %s\n", __func__, i, key); | ||||
|         } | ||||
|     } | ||||
|  | ||||
|     // print some standard metadata | ||||
|     { | ||||
|         int keyidx; | ||||
|  | ||||
|         keyidx = gguf_find_key(ggufctx, "general.name"); | ||||
|         if (keyidx != -1) { fprintf(stdout, "%s: model name         = %s\n", __func__, gguf_get_val_str(ggufctx, keyidx)); } | ||||
|         keyidx = gguf_find_key(ggufctx, "general.description"); | ||||
|         if (keyidx != -1) { fprintf(stdout, "%s: model description  = %s\n", __func__, gguf_get_val_str(ggufctx, keyidx)); } | ||||
|         keyidx = gguf_find_key(ggufctx, "general.author"); | ||||
|         if (keyidx != -1) { fprintf(stdout, "%s: model author       = %s\n", __func__, gguf_get_val_str(ggufctx, keyidx)); } | ||||
|         keyidx = gguf_find_key(ggufctx, "general.license"); | ||||
|         if (keyidx != -1) { fprintf(stdout, "%s: model license      = %s\n", __func__, gguf_get_val_str(ggufctx, keyidx)); } | ||||
|         keyidx = gguf_find_key(ggufctx, "general.architecture"); | ||||
|         if (keyidx != -1) { fprintf(stdout, "%s: model architecture = %s\n", __func__, gguf_get_val_str(ggufctx, keyidx)); } | ||||
|     } | ||||
|  | ||||
|     // check required metadata | ||||
|     { | ||||
|         int keyidx; | ||||
|  | ||||
|         keyidx = gguf_find_key(ggufctx, "general.architecture"); | ||||
|         if (keyidx != -1) { | ||||
|             if ( strcmp(gguf_get_val_str(ggufctx, keyidx), "gptneox") != 0) { | ||||
|                 fprintf(stdout, "%s: model architecture not supported!\n", __func__); | ||||
|                 return false; | ||||
|             } | ||||
|         } else { | ||||
|             fprintf(stdout, "%s: gguf model architecture not found!\n", __func__); | ||||
|             return false; | ||||
|         } | ||||
|  | ||||
|     } | ||||
|  | ||||
|     // load hparams | ||||
|     { | ||||
|         auto & hparams = model.hparams; | ||||
|  | ||||
|         bool ok = true; | ||||
|         int keyidx; | ||||
|  | ||||
|         if (ok) { keyidx = gguf_find_key(ggufctx, "gptneox.context_length"); | ||||
|                   if (keyidx != -1) { hparams.n_ctx = gguf_get_val_u32(ggufctx, keyidx); } else { ok = false; }  } | ||||
|  | ||||
|         if (ok) { keyidx = gguf_find_key(ggufctx, "gptneox.embedding_length"); | ||||
|                   if (keyidx != -1) { hparams.n_embd = gguf_get_val_u32(ggufctx, keyidx); } else { ok = false; }  } | ||||
|  | ||||
|         if (ok) { keyidx = gguf_find_key(ggufctx, "gptneox.attention.head_count"); | ||||
|                   if (keyidx != -1) { hparams.n_head = gguf_get_val_u32(ggufctx, keyidx); } else { ok = false; }  } | ||||
|  | ||||
|         if (ok) { keyidx = gguf_find_key(ggufctx, "gptneox.layer_count"); | ||||
|                   if (keyidx != -1) { hparams.n_layer = gguf_get_val_u32(ggufctx, keyidx); } else { ok = false; }  } | ||||
|  | ||||
|         if (ok) { keyidx = gguf_find_key(ggufctx, "gptneox.rope.dimension_count"); | ||||
|                   if (keyidx != -1) { hparams.n_rot = gguf_get_val_u32(ggufctx, keyidx); } else { ok = false; }  } | ||||
|  | ||||
|         if (ok) { keyidx = gguf_find_key(ggufctx, "gptneox.use_parallel_residual"); | ||||
|                   if (keyidx != -1) { hparams.par_res = gguf_get_val_bool(ggufctx, keyidx); } else { ok = false; }  } | ||||
|  | ||||
|         if (ok) { keyidx = gguf_find_key(ggufctx, "gptneox.attention.layer_norm_epsilon"); | ||||
|                   if (keyidx != -1) { hparams.norm_eps= gguf_get_val_f32(ggufctx, keyidx); } else { ok = false; }  } | ||||
|  | ||||
|         if (!ok) { | ||||
|             fprintf(stderr, "%s: required hparam missing!\n", __func__); | ||||
|             return false; | ||||
|         } | ||||
|  | ||||
|         printf("%s: n_ctx    = %d\n", __func__, hparams.n_ctx); | ||||
|         printf("%s: n_embd   = %d\n", __func__, hparams.n_embd); | ||||
|         printf("%s: n_head   = %d\n", __func__, hparams.n_head); | ||||
|         printf("%s: n_layer  = %d\n", __func__, hparams.n_layer); | ||||
|         printf("%s: n_rot    = %d\n", __func__, hparams.n_rot); | ||||
|         printf("%s: par_res  = %d\n", __func__, hparams.par_res); | ||||
|         printf("%s: norm_eps = %g\n", __func__, hparams.norm_eps); | ||||
|  | ||||
|     } | ||||
|  | ||||
|     // load vocab | ||||
|     { | ||||
|  | ||||
|         // TODO: implement a better bpe tokenizer, utilizing merges and handles unicode | ||||
|  | ||||
|         auto & hparams = model.hparams; | ||||
|  | ||||
|         int keyidx = gguf_find_key(ggufctx, "tokenizer.ggml.model"); | ||||
|  | ||||
|         if (keyidx != -1) { | ||||
|             if ( strcmp(gguf_get_val_str(ggufctx, keyidx), "gpt2") != 0) { | ||||
|                 fprintf(stdout, "%s: tokenizer model not supported!\n", __func__); | ||||
|                 return false; | ||||
|             } | ||||
|         } else { | ||||
|             fprintf(stdout, "%s: tokenizer model not found!\n", __func__); | ||||
|             return false; | ||||
|         } | ||||
|  | ||||
|  | ||||
|         int tokens_keyidx = gguf_find_key(ggufctx, "tokenizer.ggml.tokens"); | ||||
|  | ||||
|         if (tokens_keyidx == -1) { | ||||
|             fprintf(stdout, "%s: gpt2 tokenizer vocab not found!\n", __func__); | ||||
|             return false; | ||||
|         } | ||||
|  | ||||
|         int merges_keyidx = gguf_find_key(ggufctx, "tokenizer.ggml.merges"); | ||||
|  | ||||
|         if (merges_keyidx == -1) { | ||||
|             fprintf(stdout, "%s: gpt2 tokenizer merges not found!\n", __func__); | ||||
|             return false; | ||||
|         } | ||||
|  | ||||
|         hparams.n_vocab = gguf_get_arr_n(ggufctx,tokens_keyidx); | ||||
|         hparams.n_merges = gguf_get_arr_n(ggufctx,merges_keyidx); | ||||
|  | ||||
|         fprintf(stdout, "%s: gpt2 tokenizer vocab  = %zu\n", __func__, hparams.n_vocab); | ||||
|         fprintf(stdout, "%s: gpt2 tokenizer merges = %zu\n", __func__, hparams.n_merges); | ||||
|  | ||||
|         for (size_t i = 0; i < hparams.n_vocab; i++) { | ||||
|             std::string word = gguf_get_arr_str(ggufctx, tokens_keyidx, i); | ||||
|  | ||||
|  | ||||
|             // TEMP until a better bpe tokenizer is implemented | ||||
|             word = replace(word, "Ġ", " "); | ||||
|             word = replace(word, "Ċ", "\n"); | ||||
|  | ||||
|  | ||||
|             vocab.token_to_id[word] = i; | ||||
|             vocab.id_to_token[i] = word; | ||||
|         } | ||||
|  | ||||
|  | ||||
|     } | ||||
|  | ||||
|  | ||||
|     auto & ctx = model.ctx; | ||||
|     size_t ctx_size = ggml_get_mem_size(ctx); | ||||
|  | ||||
|     printf("%s: ggml ctx size = %6.2f MB\n", __func__, ctx_size/(1024.0*1024.0)); | ||||
|  | ||||
|     // print tensor info | ||||
|     if( false ) | ||||
|     { | ||||
|         const int n_tensors = gguf_get_n_tensors(ggufctx); | ||||
|  | ||||
|         fprintf(stdout, "%s: n_tensors: %d\n", __func__, n_tensors); | ||||
|  | ||||
|         for (int i = 0; i < n_tensors; ++i) { | ||||
|             const char * name   = gguf_get_tensor_name  (ggufctx, i); | ||||
|             const size_t offset = gguf_get_tensor_offset(ggufctx, i); | ||||
|  | ||||
|             fprintf(stdout, "%s: tensor[%d]: name = %s, offset = %zu\n", __func__, i, name, offset); | ||||
|         } | ||||
|     } | ||||
|  | ||||
|  | ||||
|     // prepare memory for the weights | ||||
|     { | ||||
|         const int n_layer = model.hparams.n_layer; | ||||
|  | ||||
|         model.layers.resize(n_layer); | ||||
|  | ||||
|         model.wte    = ggml_get_tensor(ctx, "gpt_neox.embed_in.weight"); | ||||
|         model.ln_f_g = ggml_get_tensor(ctx, "gpt_neox.final_layer_norm.weight"); | ||||
|         model.ln_f_b = ggml_get_tensor(ctx, "gpt_neox.final_layer_norm.bias"); | ||||
|         model.lmh_g  = ggml_get_tensor(ctx, "embed_out.weight"); | ||||
|  | ||||
|         // map by name | ||||
|         model.tensors["gpt_neox.embed_in.weight"] = model.wte; | ||||
|         model.tensors["gpt_neox.final_layer_norm.weight"] = model.ln_f_g; | ||||
|         model.tensors["gpt_neox.final_layer_norm.bias"]   = model.ln_f_b; | ||||
|         model.tensors["embed_out.weight"] = model.lmh_g; | ||||
|  | ||||
|         for (int i = 0; i < n_layer; ++i) { | ||||
|             auto & layer = model.layers[i]; | ||||
|  | ||||
|             layer.ln_1_g          = get_tensor_ex(ctx, "gpt_neox.layers." + std::to_string(i) + ".input_layernorm.weight" ); | ||||
|             layer.ln_1_b          = get_tensor_ex(ctx, "gpt_neox.layers." + std::to_string(i) + ".input_layernorm.bias" ); | ||||
|  | ||||
|             layer.c_attn_attn_w   = get_tensor_ex(ctx, "gpt_neox.layers." + std::to_string(i) + ".attention.query_key_value.weight" ); | ||||
|             layer.c_attn_attn_b   = get_tensor_ex(ctx, "gpt_neox.layers." + std::to_string(i) + ".attention.query_key_value.bias" ); | ||||
|  | ||||
|             layer.c_attn_proj_w   = get_tensor_ex(ctx, "gpt_neox.layers." + std::to_string(i) + ".attention.dense.weight" ); | ||||
|             layer.c_attn_proj_b   = get_tensor_ex(ctx, "gpt_neox.layers." + std::to_string(i) + ".attention.dense.bias" ); | ||||
|  | ||||
|             layer.ln_2_g          = get_tensor_ex(ctx, "gpt_neox.layers." + std::to_string(i) + ".post_attention_layernorm.weight" ); | ||||
|             layer.ln_2_b          = get_tensor_ex(ctx, "gpt_neox.layers." + std::to_string(i) + ".post_attention_layernorm.bias"); | ||||
|  | ||||
|             layer.c_mlp_fc_w      = get_tensor_ex(ctx, "gpt_neox.layers." + std::to_string(i) + ".mlp.dense_h_to_4h.weight" ); | ||||
|             layer.c_mlp_fc_b      = get_tensor_ex(ctx, "gpt_neox.layers." + std::to_string(i) + ".mlp.dense_h_to_4h.bias" ); | ||||
|  | ||||
|             layer.c_mlp_proj_w    = get_tensor_ex(ctx, "gpt_neox.layers." + std::to_string(i) + ".mlp.dense_4h_to_h.weight" ); | ||||
|             layer.c_mlp_proj_b    = get_tensor_ex(ctx, "gpt_neox.layers." + std::to_string(i) + ".mlp.dense_4h_to_h.bias" ); | ||||
|  | ||||
|             // map by name | ||||
|             model.tensors["gpt_neox.layers." + std::to_string(i) + ".input_layernorm.weight"] = layer.ln_1_g; | ||||
|             model.tensors["gpt_neox.layers." + std::to_string(i) + ".input_layernorm.bias"]   = layer.ln_1_b; | ||||
|  | ||||
|             model.tensors["gpt_neox.layers." + std::to_string(i) + ".attention.query_key_value.weight"] = layer.c_attn_attn_w; | ||||
|             model.tensors["gpt_neox.layers." + std::to_string(i) + ".attention.query_key_value.bias"]   = layer.c_attn_attn_b; | ||||
|  | ||||
|             model.tensors["gpt_neox.layers." + std::to_string(i) + ".attention.dense.weight"] = layer.c_attn_proj_w; | ||||
|             model.tensors["gpt_neox.layers." + std::to_string(i) + ".attention.dense.bias"]   = layer.c_attn_proj_b; | ||||
|  | ||||
|             model.tensors["gpt_neox.layers." + std::to_string(i) + ".post_attention_layernorm.weight"] = layer.ln_2_g; | ||||
|             model.tensors["gpt_neox.layers." + std::to_string(i) + ".post_attention_layernorm.bias"]   = layer.ln_2_b; | ||||
|  | ||||
|             model.tensors["gpt_neox.layers." + std::to_string(i) + ".mlp.dense_h_to_4h.weight"] = layer.c_mlp_fc_w; | ||||
|             model.tensors["gpt_neox.layers." + std::to_string(i) + ".mlp.dense_h_to_4h.bias"]   = layer.c_mlp_fc_b; | ||||
|  | ||||
|             model.tensors["gpt_neox.layers." + std::to_string(i) + ".mlp.dense_4h_to_h.weight"] = layer.c_mlp_proj_w; | ||||
|             model.tensors["gpt_neox.layers." + std::to_string(i) + ".mlp.dense_4h_to_h.bias"]   = layer.c_mlp_proj_b; | ||||
|         } | ||||
|     } | ||||
|  | ||||
|     // key + value memory | ||||
|     { | ||||
|         const auto & kvctx = model.kvctx; | ||||
|         const auto & hparams = model.hparams; | ||||
|  | ||||
|         const int n_embd  = hparams.n_embd; | ||||
|         const int n_layer = hparams.n_layer; | ||||
|         const int n_ctx   = hparams.n_ctx; | ||||
|  | ||||
|         const int64_t n_mem      = n_layer*n_ctx; | ||||
|         const int64_t n_elements = n_embd*n_mem; | ||||
|  | ||||
|         // create the ggml context | ||||
|         { | ||||
|             struct ggml_init_params params = { | ||||
|                 /*.mem_size   =*/ size_t(n_elements*4+ggml_tensor_overhead()*2), | ||||
|                 /*.mem_buffer =*/ NULL, | ||||
|                 /*.no_alloc   =*/ false, | ||||
|             }; | ||||
|  | ||||
|             model.kvctx = ggml_init(params); | ||||
|             if (!model.kvctx) { | ||||
|                 fprintf(stderr, "%s: kv ggml_init() failed\n", __func__); | ||||
|                 return false; | ||||
|             } | ||||
|  | ||||
|         } | ||||
|  | ||||
|  | ||||
|         model.memory_k = ggml_new_tensor_1d(kvctx, GGML_TYPE_F16, n_elements); | ||||
|         model.memory_v = ggml_new_tensor_1d(kvctx, GGML_TYPE_F16, n_elements); | ||||
|  | ||||
|         const size_t memory_size = ggml_nbytes(model.memory_k) + ggml_nbytes(model.memory_v); | ||||
|  | ||||
|         printf("%s: memory_size = %8.2f MB, n_mem = %" PRId64 "\n", __func__, memory_size/1024.0/1024.0, n_mem); | ||||
|     } | ||||
|  | ||||
|     return true; | ||||
| } | ||||
|  | ||||
|  | ||||
| // feed-forward network | ||||
| ggml_tensor * gpt_neox_ff( | ||||
|         const gpt_neox_layer &layer, | ||||
|         ggml_context * ctx0, | ||||
|         ggml_tensor * inp) { | ||||
|     ggml_tensor * cur = ggml_norm(ctx0, inp); | ||||
|  | ||||
|     cur = ggml_add(ctx0, | ||||
|         ggml_mul(ctx0, | ||||
|             ggml_repeat(ctx0, layer.ln_2_g, cur), | ||||
|             cur), | ||||
|         ggml_repeat(ctx0, layer.ln_2_b, cur)); | ||||
|  | ||||
|     cur = ggml_mul_mat(ctx0, | ||||
|             layer.c_mlp_fc_w, | ||||
|             cur); | ||||
|  | ||||
|     cur = ggml_add(ctx0, | ||||
|             ggml_repeat(ctx0, layer.c_mlp_fc_b, cur), | ||||
|             cur); | ||||
|  | ||||
|     // GELU activation | ||||
|     cur = ggml_gelu(ctx0, cur); | ||||
|  | ||||
|     // projection | ||||
|     // cur = proj_w*cur + proj_b | ||||
|     cur = ggml_mul_mat(ctx0, | ||||
|             layer.c_mlp_proj_w, | ||||
|             cur); | ||||
|  | ||||
|     cur = ggml_add(ctx0, | ||||
|             ggml_repeat(ctx0, layer.c_mlp_proj_b, cur), | ||||
|             cur); | ||||
|     return cur; | ||||
| } | ||||
|  | ||||
| // evaluate the transformer | ||||
| // | ||||
| //   - model:     the model | ||||
| //   - n_threads: number of threads to use | ||||
| //   - n_past:    the context size so far | ||||
| //   - embd_inp:  the embeddings of the tokens in the context | ||||
| //   - embd_w:    the predicted logits for the next token | ||||
| // | ||||
| bool gpt_neox_eval( | ||||
|         const gpt_neox_model & model, | ||||
|         const int n_threads, | ||||
|         const int n_past, | ||||
|         const std::vector<gpt_vocab::id> & embd_inp, | ||||
|               std::vector<float>         & embd_w, | ||||
|               size_t                     & mem_per_token) { | ||||
|     const int N = embd_inp.size(); | ||||
|  | ||||
|     const auto & hparams = model.hparams; | ||||
|  | ||||
|     const int n_embd  = hparams.n_embd; | ||||
|     const int n_layer = hparams.n_layer; | ||||
|     const int n_ctx   = hparams.n_ctx; | ||||
|     const int n_head  = hparams.n_head; | ||||
|     const int n_vocab = hparams.n_vocab; | ||||
|     const int n_rot   = hparams.n_rot; | ||||
|  | ||||
|     static size_t buf_size = 256u*1024*1024; | ||||
|     static void * buf = malloc(buf_size); | ||||
|  | ||||
|     // use 2 scratch buffers | ||||
|     // TODO: very hacky solution - reimplement in a more elegant way | ||||
|     static size_t scr0_size = 256u*1024*1024; | ||||
|     static void * scr0 = malloc(scr0_size); | ||||
|  | ||||
|     static size_t scr1_size = 256u*1024*1024; | ||||
|     static void * scr1 = malloc(scr1_size); | ||||
|  | ||||
|     if (mem_per_token > 0 && mem_per_token*N > buf_size) { | ||||
|         const size_t buf_size_new = 1.1*(mem_per_token*N); // add 10% to account for ggml object overhead | ||||
|         //printf("\n%s: reallocating buffer from %zu to %zu bytes\n", __func__, buf_size, buf_size_new); | ||||
|  | ||||
|         // reallocate | ||||
|         buf_size = buf_size_new; | ||||
|         buf = realloc(buf, buf_size); | ||||
|         if (buf == nullptr) { | ||||
|             fprintf(stderr, "%s: failed to allocate %zu bytes\n", __func__, buf_size); | ||||
|             return false; | ||||
|         } | ||||
|     } | ||||
|  | ||||
|     struct ggml_init_params params = { | ||||
|         /*.mem_size   =*/ buf_size, | ||||
|         /*.mem_buffer =*/ buf, | ||||
|         /*.no_alloc   =*/ false, | ||||
|     }; | ||||
|  | ||||
|     struct ggml_context * ctx0 = ggml_init(params); | ||||
|     struct ggml_cgraph gf = {}; | ||||
|  | ||||
|     struct ggml_tensor * embd = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, N); | ||||
|     memcpy(embd->data, embd_inp.data(), N*ggml_element_size(embd)); | ||||
|  | ||||
|  | ||||
|     // wte | ||||
|     struct ggml_tensor * inpL = ggml_get_rows(ctx0, model.wte, embd); | ||||
|  | ||||
|     for (int il = 0; il < n_layer; ++il) { | ||||
|         struct ggml_tensor * cur; | ||||
|  | ||||
|         ggml_set_scratch(ctx0, { 0, scr0_size, scr0, }); | ||||
|  | ||||
|         // self-attention | ||||
|         { | ||||
|             { | ||||
|                 cur = ggml_norm(ctx0, inpL); | ||||
|  | ||||
|                 cur = ggml_add(ctx0, | ||||
|                         ggml_mul(ctx0, | ||||
|                             ggml_repeat(ctx0, model.layers[il].ln_1_g, cur), | ||||
|                             cur), | ||||
|                         ggml_repeat(ctx0, model.layers[il].ln_1_b, cur)); | ||||
|             } | ||||
|  | ||||
|             // compute QKV | ||||
|             { | ||||
|  | ||||
|                 cur = ggml_mul_mat(ctx0, | ||||
|                         model.layers[il].c_attn_attn_w, | ||||
|                         cur); | ||||
|  | ||||
|                 cur = ggml_add(ctx0, | ||||
|                         ggml_repeat(ctx0, model.layers[il].c_attn_attn_b, cur), | ||||
|                         cur); | ||||
|             } | ||||
|  | ||||
|             struct ggml_tensor * Qcur = ggml_cont(ctx0, ggml_view_3d(ctx0, cur, n_embd/n_head, n_head, N, cur->nb[1]/n_head, cur->nb[1], 0*sizeof(float)*n_embd/n_head)); | ||||
|             struct ggml_tensor * Kcur = ggml_cont(ctx0, ggml_view_3d(ctx0, cur, n_embd/n_head, n_head, N, cur->nb[1]/n_head, cur->nb[1], 1*sizeof(float)*n_embd/n_head)); | ||||
|             struct ggml_tensor * Vcur = ggml_cont(ctx0, ggml_view_3d(ctx0, cur, n_embd/n_head, n_head, N, cur->nb[1]/n_head, cur->nb[1], 2*sizeof(float)*n_embd/n_head)); | ||||
|  | ||||
|             // using mode = 2 for GPT-NeoX mode | ||||
|             Qcur = ggml_rope_inplace(ctx0, Qcur, n_past, n_rot, 2, 0); | ||||
|             Kcur = ggml_rope_inplace(ctx0, Kcur, n_past, n_rot, 2, 0); | ||||
|  | ||||
|             // store key and value to memory | ||||
|             { | ||||
|                 Vcur = ggml_transpose(ctx0, ggml_reshape_2d(ctx0, Vcur, n_embd, N)); | ||||
|  | ||||
|                 struct ggml_tensor * k = ggml_view_1d(ctx0, model.memory_k, N*n_embd, (ggml_element_size(model.memory_k)*n_embd)*(il*n_ctx + n_past)); | ||||
|                 struct ggml_tensor * v = ggml_view_2d(ctx0, model.memory_v, N, n_embd, | ||||
|                         (   n_ctx)*ggml_element_size(model.memory_v), | ||||
|                         (il*n_ctx)*ggml_element_size(model.memory_v)*n_embd + n_past*ggml_element_size(model.memory_v)); | ||||
|  | ||||
|                 ggml_build_forward_expand(&gf, ggml_cpy(ctx0, Kcur, k)); | ||||
|                 ggml_build_forward_expand(&gf, ggml_cpy(ctx0, Vcur, v)); | ||||
|             } | ||||
|  | ||||
|             // Q = Qcur.contiguous().view(n_embd/n_head, n_head, N).permute(0, 2, 1, 3) | ||||
|             struct ggml_tensor * Q = | ||||
|                 ggml_permute(ctx0, | ||||
|                         Qcur, | ||||
|                         0, 2, 1, 3); | ||||
|  | ||||
|             // K = Kmem.view(n_embd/n_head, n_head, n_past + N).permute(0, 2, 1, 3) | ||||
|             struct ggml_tensor * K = | ||||
|                 ggml_permute(ctx0, | ||||
|                         ggml_reshape_3d(ctx0, | ||||
|                             ggml_view_1d(ctx0, model.memory_k, (n_past + N)*n_embd, il*n_ctx*ggml_element_size(model.memory_k)*n_embd), | ||||
|                             n_embd/n_head, n_head, n_past + N), | ||||
|                         0, 2, 1, 3); | ||||
|  | ||||
|             // K * Q | ||||
|             struct ggml_tensor * KQ = ggml_mul_mat(ctx0, K, Q); | ||||
|  | ||||
|             // KQ_scaled = KQ / sqrt(n_embd/n_head) | ||||
|             struct ggml_tensor * KQ_scaled = | ||||
|                 ggml_scale_inplace(ctx0, | ||||
|                         KQ, | ||||
|                         ggml_new_f32(ctx0, 1.0f/sqrt(float(n_embd)/n_head)) | ||||
|                         ); | ||||
|  | ||||
|             // KQ_masked = mask_past(KQ_scaled) | ||||
|             struct ggml_tensor * KQ_masked = ggml_diag_mask_inf_inplace(ctx0, KQ_scaled, n_past); | ||||
|  | ||||
|             // KQ = soft_max(KQ_masked) | ||||
|             struct ggml_tensor * KQ_soft_max = ggml_soft_max_inplace(ctx0, KQ_masked); | ||||
|  | ||||
|             // V_trans = Vmem.view(n_embd/n_head, n_head, n_past + N).permute(1, 2, 0, 3).contiguous() | ||||
|             struct ggml_tensor * V = | ||||
|                 ggml_view_3d(ctx0, model.memory_v, | ||||
|                         n_past + N, n_embd/n_head, n_head, | ||||
|                         n_ctx*ggml_element_size(model.memory_v), | ||||
|                         n_ctx*ggml_element_size(model.memory_v)*n_embd/n_head, | ||||
|                         il*n_ctx*ggml_element_size(model.memory_v)*n_embd); | ||||
|  | ||||
|             // KQV = transpose(V) * KQ_soft_max | ||||
|             struct ggml_tensor * KQV = ggml_mul_mat(ctx0, V, KQ_soft_max); | ||||
|  | ||||
|             // KQV_merged = KQV.permute(0, 2, 1, 3) | ||||
|             struct ggml_tensor * KQV_merged = ggml_permute(ctx0, KQV, 0, 2, 1, 3); | ||||
|  | ||||
|             // cur = KQV_merged.contiguous().view(n_embd, N) | ||||
|             cur = ggml_cpy(ctx0, | ||||
|                     KQV_merged, | ||||
|                     ggml_new_tensor_2d(ctx0, GGML_TYPE_F32, n_embd, N)); | ||||
|  | ||||
|             // projection | ||||
|             { | ||||
|                 cur = ggml_mul_mat(ctx0, | ||||
|                         model.layers[il].c_attn_proj_w, | ||||
|                         cur); | ||||
|  | ||||
|                 cur = ggml_add(ctx0, ggml_repeat(ctx0, model.layers[il].c_attn_proj_b, cur), cur); | ||||
|             } | ||||
|         } | ||||
|  | ||||
|         ggml_set_scratch(ctx0, { 0, scr1_size, scr1, }); | ||||
|  | ||||
|         if (hparams.par_res == 0) { | ||||
|             struct ggml_tensor * inpFF = ggml_add(ctx0, cur, inpL); | ||||
|  | ||||
|             cur = gpt_neox_ff(model.layers[il], ctx0, inpFF); | ||||
|  | ||||
|             // input for next layer | ||||
|             inpL = ggml_add(ctx0, cur, inpFF); | ||||
|         } else { | ||||
|             struct ggml_tensor * inpFF = cur; | ||||
|  | ||||
|             // this is independent of the self-attention result, so it could be done in parallel to the self-attention | ||||
|             // note here we pass inpL instead of cur | ||||
|             cur = gpt_neox_ff(model.layers[il], ctx0, inpL); | ||||
|  | ||||
|             // layer input + FF | ||||
|             cur  = ggml_add(ctx0, cur, inpFF); | ||||
|  | ||||
|             // input for next layer | ||||
|             inpL = ggml_add(ctx0, cur, inpL); | ||||
|         } | ||||
|     } | ||||
|  | ||||
|     ggml_set_scratch(ctx0, { 0, scr0_size, scr0, }); | ||||
|  | ||||
|     // norm | ||||
|     { | ||||
|         inpL = ggml_norm(ctx0, inpL); | ||||
|  | ||||
|         // inpL = ln_f_g*inpL + ln_f_b | ||||
|         inpL = ggml_add(ctx0, | ||||
|                 ggml_mul(ctx0, | ||||
|                     ggml_repeat(ctx0, model.ln_f_g, inpL), | ||||
|                     inpL), | ||||
|                 ggml_repeat(ctx0, model.ln_f_b, inpL)); | ||||
|     } | ||||
|  | ||||
|     ggml_set_scratch(ctx0, { 0, 0, nullptr, }); | ||||
|  | ||||
|     // lm_head | ||||
|     { | ||||
|         inpL = ggml_mul_mat(ctx0, model.lmh_g, inpL); | ||||
|  | ||||
|         //inpL = ggml_add(ctx0, | ||||
|         //        ggml_repeat(ctx0, model.lmh_b, inpL), | ||||
|         //        inpL); | ||||
|     } | ||||
|  | ||||
|     // logits -> probs | ||||
|     //inpL = ggml_soft_max_inplace(ctx0, inpL); | ||||
|  | ||||
|     // run the computation | ||||
|     ggml_build_forward_expand(&gf, inpL); | ||||
|     ggml_graph_compute_with_ctx(ctx0, &gf, n_threads); | ||||
|  | ||||
|     //if (n_past%100 == 0) { | ||||
|     //    ggml_graph_print   (&gf); | ||||
|     //    ggml_graph_dump_dot(&gf, NULL, "gpt-2.dot"); | ||||
|     //} | ||||
|  | ||||
|     //embd_w.resize(n_vocab*N); | ||||
|     //memcpy(embd_w.data(), ggml_get_data(inpL), sizeof(float)*n_vocab*N); | ||||
|  | ||||
|     // return result for just the last token | ||||
|     embd_w.resize(n_vocab); | ||||
|     memcpy(embd_w.data(), (float *) ggml_get_data(inpL) + (n_vocab*(N-1)), sizeof(float)*n_vocab); | ||||
|  | ||||
|     if (mem_per_token == 0) { | ||||
|         mem_per_token = ggml_used_mem(ctx0)/N; | ||||
|     } | ||||
|     //printf("used_mem = %zu\n", ggml_used_mem(ctx0)); | ||||
|  | ||||
|     ggml_free(ctx0); | ||||
|  | ||||
|     return true; | ||||
| } | ||||
|  | ||||
| int main(int argc, char ** argv) { | ||||
|     ggml_time_init(); | ||||
|  | ||||
|     const int64_t t_main_start_us = ggml_time_us(); | ||||
|  | ||||
|     gpt_params params; | ||||
|  | ||||
|     if (gpt_params_parse(argc, argv, params) == false) { | ||||
|         return 1; | ||||
|     } | ||||
|  | ||||
|     if (params.seed < 0) { | ||||
|         params.seed = time(NULL); | ||||
|     } | ||||
|  | ||||
|     printf("%s: seed = %d\n", __func__, params.seed); | ||||
|  | ||||
|     std::mt19937 rng(params.seed); | ||||
|     if (params.prompt.empty()) { | ||||
|         params.prompt = gpt_random_prompt(rng); | ||||
|     } | ||||
|  | ||||
|     int64_t t_load_us = 0; | ||||
|  | ||||
|     gpt_vocab vocab; | ||||
|     gpt_neox_model model; | ||||
|  | ||||
|     // load the model | ||||
|     { | ||||
|         const int64_t t_start_us = ggml_time_us(); | ||||
|  | ||||
|         if (!gpt_neox_model_load(params.model, model, vocab)) { | ||||
|             fprintf(stderr, "%s: failed to load model from '%s'\n", __func__, params.model.c_str()); | ||||
|             return 1; | ||||
|         } | ||||
|  | ||||
|         t_load_us = ggml_time_us() - t_start_us; | ||||
|  | ||||
|     } | ||||
|  | ||||
|     int n_past = 0; | ||||
|  | ||||
|     int64_t t_sample_us  = 0; | ||||
|     int64_t t_predict_us = 0; | ||||
|  | ||||
|     std::vector<float> logits; | ||||
|  | ||||
|     // tokenize the prompt | ||||
|     std::vector<gpt_vocab::id> embd_inp = ::gpt_tokenize(vocab, params.prompt); | ||||
|  | ||||
|     params.n_predict = std::min(params.n_predict, model.hparams.n_ctx - (int) embd_inp.size()); | ||||
|  | ||||
|     printf("%s: number of tokens in prompt = %zu\n", __func__, embd_inp.size()); | ||||
|     for (int i = 0; i < embd_inp.size(); i++) { | ||||
|         printf("%s: token[%d] = %6d, %s\n", __func__, i, embd_inp[i], vocab.id_to_token.at(embd_inp[i]).c_str()); | ||||
|     } | ||||
|     printf("\n"); | ||||
|  | ||||
|     std::vector<gpt_vocab::id> embd; | ||||
|  | ||||
|     // determine the required inference memory per token: | ||||
|     size_t mem_per_token = 0; | ||||
|     gpt_neox_eval(model, params.n_threads, 0, { 0, 1, 2, 3 }, logits, mem_per_token); | ||||
|  | ||||
|     for (int i = embd.size(); i < embd_inp.size() + params.n_predict; i++) { | ||||
|         // predict | ||||
|         if (embd.size() > 0) { | ||||
|             const int64_t t_start_us = ggml_time_us(); | ||||
|  | ||||
|             if (!gpt_neox_eval(model, params.n_threads, n_past, embd, logits, mem_per_token)) { | ||||
|                 printf("Failed to predict\n"); | ||||
|                 return 1; | ||||
|             } | ||||
|  | ||||
|             t_predict_us += ggml_time_us() - t_start_us; | ||||
|         } | ||||
|  | ||||
|         n_past += embd.size(); | ||||
|         embd.clear(); | ||||
|  | ||||
|         if (i >= embd_inp.size()) { | ||||
|             // sample next token | ||||
|             const int   top_k = params.top_k; | ||||
|             const float top_p = params.top_p; | ||||
|             const float temp  = params.temp; | ||||
|  | ||||
|             const int n_vocab = model.hparams.n_vocab; | ||||
|  | ||||
|             gpt_vocab::id id = 0; | ||||
|  | ||||
|             { | ||||
|                 const int64_t t_start_sample_us = ggml_time_us(); | ||||
|  | ||||
|                 id = gpt_sample_top_k_top_p(vocab, logits.data() + (logits.size() - n_vocab), top_k, top_p, temp, rng); | ||||
|  | ||||
|                 t_sample_us += ggml_time_us() - t_start_sample_us; | ||||
|             } | ||||
|  | ||||
|             // add it to the context | ||||
|             embd.push_back(id); | ||||
|         } else { | ||||
|             // if here, it means we are still processing the input prompt | ||||
|             for (int k = i; k < embd_inp.size(); k++) { | ||||
|                 embd.push_back(embd_inp[k]); | ||||
|                 if (embd.size() > params.n_batch) { | ||||
|                     break; | ||||
|                 } | ||||
|             } | ||||
|             i += embd.size() - 1; | ||||
|         } | ||||
|  | ||||
|         // display text | ||||
|         for (auto id : embd) { | ||||
|             printf("%s", vocab.id_to_token[id].c_str()); | ||||
|         } | ||||
|         fflush(stdout); | ||||
|  | ||||
|         // end of text token | ||||
|         if (embd.back() == 0) { | ||||
|             break; | ||||
|         } | ||||
|     } | ||||
|  | ||||
|     // report timing | ||||
|     { | ||||
|         const int64_t t_main_end_us = ggml_time_us(); | ||||
|  | ||||
|         printf("\n\n"); | ||||
|         printf("%s: mem per token = %8zu bytes\n", __func__, mem_per_token); | ||||
|         printf("%s:     load time = %8.2f ms\n", __func__, t_load_us/1000.0f); | ||||
|         printf("%s:   sample time = %8.2f ms\n", __func__, t_sample_us/1000.0f); | ||||
|         printf("%s:  predict time = %8.2f ms / %.2f ms per token\n", __func__, t_predict_us/1000.0f, t_predict_us/1000.0f/n_past); | ||||
|         printf("%s:    total time = %8.2f ms\n", __func__, (t_main_end_us - t_main_start_us)/1000.0f); | ||||
|     } | ||||
|  | ||||
|     ggml_free(model.ctx); | ||||
|  | ||||
|     return 0; | ||||
| } | ||||
		Reference in New Issue
	
	Block a user
	 klosax
					klosax