mirror of
				https://github.com/ggml-org/llama.cpp.git
				synced 2025-10-31 08:51:55 +00:00 
			
		
		
		
	llava : support MiniCPM-V-2.5 (#7599)
* init * rename * add run android for termux in readme * add android readme * add instructions in readme * change name in readme * Update README.md * fixed line * add result in readme * random pos_embed * add positions index * change for ollama * change for ollama * better pos_embed in clip * support ollama * updata cmakelist * updata cmakelist * rename wrapper * clear code * replace and organize code * add link * sync master * fix warnings * fix warnings * fix bug in bicubic resize when need resize iamge smaller * receive review comments and modify * receive review comments and modify * put all code into llava dir * fix quality problem in pr code * change n_layer * add space in "-1" * imitate reshape bug of python code * fix bug in clip * fix issues for merging * fix llama-minicpmv-cli in cmake file * change pr readme * fix code review * remove in line 33 directory in the /cmakelists.txt (not in example, in the main dir * fix cmakefile * add warn * fix KEY_HAS_MINICPMV_PROJ * remove load_image_size into clip_ctx * remove the extern "C", MINICPMV_API * fix uhd code for review comment * delete minicpmv-wrapper in pr * remove uhd_image_embed * Modify 2 notes * clip : style changes * del common.h in clip * fix Type-Check error * fix Type-Check error * fix Type-Check error * fix Type-Check error * fix makefile error * fix ubuntu-make error * try fix clip * try fix 1 --------- Co-authored-by: Hongji Zhu <fireyoucan@gmail.com> Co-authored-by: harvestingmoon <leewenyeong@gmail.com> Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
This commit is contained in:
		
							
								
								
									
										382
									
								
								examples/llava/minicpmv-convert-image-encoder-to-gguf.py
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										382
									
								
								examples/llava/minicpmv-convert-image-encoder-to-gguf.py
									
									
									
									
									
										Normal file
									
								
							| @@ -0,0 +1,382 @@ | ||||
| import argparse | ||||
| import os | ||||
| import json | ||||
| import re | ||||
|  | ||||
| import torch | ||||
| import numpy as np | ||||
| from gguf import * | ||||
| from transformers.models.idefics2.modeling_idefics2 import Idefics2VisionTransformer, Idefics2VisionConfig | ||||
|  | ||||
| TEXT = "clip.text" | ||||
| VISION = "clip.vision" | ||||
|  | ||||
|  | ||||
| def add_key_str(raw_key: str, arch: str) -> str: | ||||
|     return raw_key.format(arch=arch) | ||||
|  | ||||
|  | ||||
| def should_skip_tensor(name: str, has_text: bool, has_vision: bool, has_minicpmv: bool) -> bool: | ||||
|     if name in ( | ||||
|         "logit_scale", | ||||
|         "text_model.embeddings.position_ids", | ||||
|         "vision_model.embeddings.position_ids", | ||||
|     ): | ||||
|         return True | ||||
|  | ||||
|     if has_minicpmv and name in ["visual_projection.weight"]: | ||||
|         return True | ||||
|  | ||||
|     if name.startswith("v") and not has_vision: | ||||
|         return True | ||||
|  | ||||
|     if name.startswith("t") and not has_text: | ||||
|         return True | ||||
|  | ||||
|     return False | ||||
|  | ||||
|  | ||||
| def get_tensor_name(name: str) -> str: | ||||
|     if "projection" in name: | ||||
|         return name | ||||
|     if "mm_projector" in name: | ||||
|         name = name.replace("model.mm_projector", "mm") | ||||
|         name = re.sub(r'mm\.mlp\.mlp', 'mm.model.mlp', name, count=1) | ||||
|         name = re.sub(r'mm\.peg\.peg', 'mm.model.peg', name, count=1) | ||||
|         return name | ||||
|  | ||||
|     return name.replace("text_model", "t").replace("vision_model", "v").replace("encoder.layers", "blk").replace("embeddings.", "").replace("_proj", "").replace("self_attn.", "attn_").replace("layer_norm", "ln").replace("layernorm", "ln").replace("mlp.fc1", "ffn_down").replace("mlp.fc2", "ffn_up").replace("embedding", "embd").replace("final", "post").replace("layrnorm", "ln") | ||||
|  | ||||
|  | ||||
| def bytes_to_unicode(): | ||||
|     """ | ||||
|     Returns list of utf-8 byte and a corresponding list of unicode strings. | ||||
|     The reversible bpe codes work on unicode strings. | ||||
|     This means you need a large # of unicode characters in your vocab if you want to avoid UNKs. | ||||
|     When you're at something like a 10B token dataset you end up needing around 5K for decent coverage. | ||||
|     This is a significant percentage of your normal, say, 32K bpe vocab. | ||||
|     To avoid that, we want lookup tables between utf-8 bytes and unicode strings. | ||||
|     And avoids mapping to whitespace/control characters the bpe code barfs on. | ||||
|     """ | ||||
|     bs = ( | ||||
|         list(range(ord("!"), ord("~") + 1)) | ||||
|         + list(range(ord("¡"), ord("¬") + 1)) | ||||
|         + list(range(ord("®"), ord("ÿ") + 1)) | ||||
|     ) | ||||
|     cs = bs[:] | ||||
|     n = 0 | ||||
|     for b in range(2**8): | ||||
|         if b not in bs: | ||||
|             bs.append(b) | ||||
|             cs.append(2**8 + n) | ||||
|             n += 1 | ||||
|     cs = [chr(n) for n in cs] | ||||
|     return dict(zip(bs, cs)) | ||||
|  | ||||
|  | ||||
| ap = argparse.ArgumentParser() | ||||
| ap.add_argument("-m", "--model-dir", help="Path to model directory cloned from HF Hub", required=True) | ||||
| ap.add_argument("--use-f32", action="store_true", default=False, help="Use f32 instead of f16") | ||||
| ap.add_argument("--text-only", action="store_true", required=False, | ||||
|                 help="Save a text-only model. It can't be used to encode images") | ||||
| ap.add_argument("--vision-only", action="store_true", required=False, | ||||
|                 help="Save a vision-only model. It can't be used to encode texts") | ||||
| ap.add_argument("--clip-model-is-vision", action="store_true", required=False, | ||||
|                 help="The clip model is a pure vision model (ShareGPT4V vision extract for example)") | ||||
| ap.add_argument("--clip-model-is-openclip", action="store_true", required=False, | ||||
|                 help="The clip model is from openclip (for ViT-SO400M type))") | ||||
| ap.add_argument("--minicpmv-projector", help="Path to minicpmv.projector file. If specified, save an image encoder for MiniCPM-V models.") | ||||
| ap.add_argument("--projector-type", help="Type of projector. Possible values: mlp, ldp, ldpv2", choices=["mlp", "ldp", "ldpv2"], default="mlp") | ||||
| ap.add_argument("-o", "--output-dir", help="Directory to save GGUF files. Default is the original model directory", default=None) | ||||
| # Example --image_mean 0.48145466 0.4578275 0.40821073 --image_std 0.26862954 0.26130258 0.27577711 | ||||
| # Example --image_mean 0.5 0.5 0.5 --image_std 0.5 0.5 0.5 | ||||
| default_image_mean = [0.48145466, 0.4578275, 0.40821073] | ||||
| default_image_std = [0.26862954, 0.26130258, 0.27577711] | ||||
| ap.add_argument('--image-mean', type=float, nargs='+', help='Mean of the images for normalization (overrides processor) ', default=None) | ||||
| ap.add_argument('--image-std', type=float, nargs='+', help='Standard deviation of the images for normalization (overrides processor)', default=None) | ||||
|  | ||||
| # with proper | ||||
| args = ap.parse_args() | ||||
|  | ||||
|  | ||||
| if args.text_only and args.vision_only: | ||||
|     print("--text-only and --image-only arguments cannot be specified at the same time.") | ||||
|     exit(1) | ||||
|  | ||||
| if args.use_f32: | ||||
|     print("WARNING: Weights for the convolution op is always saved in f16, as the convolution op in GGML does not support 32-bit kernel weights yet.") | ||||
|  | ||||
| # output in the same directory as the model if output_dir is None | ||||
| dir_model = args.model_dir | ||||
|  | ||||
| if args.clip_model_is_vision or not os.path.exists(dir_model + "/vocab.json") or args.clip_model_is_openclip: | ||||
|     vocab = None | ||||
|     tokens = None | ||||
| else: | ||||
|     with open(dir_model + "/vocab.json", "r", encoding="utf-8") as f: | ||||
|         vocab = json.load(f) | ||||
|         tokens = [key for key in vocab] | ||||
|  | ||||
| # possible data types | ||||
| #   ftype == 0 -> float32 | ||||
| #   ftype == 1 -> float16 | ||||
| # | ||||
| # map from ftype to string | ||||
| ftype_str = ["f32", "f16"] | ||||
|  | ||||
| ftype = 1 | ||||
| if args.use_f32: | ||||
|     ftype = 0 | ||||
|  | ||||
| # if args.clip_model_is_vision or args.clip_model_is_openclip: | ||||
| #     model = CLIPVisionModel.from_pretrained(dir_model) | ||||
| #     processor = None | ||||
| # else: | ||||
| #     model = CLIPModel.from_pretrained(dir_model) | ||||
| #     processor = CLIPProcessor.from_pretrained(dir_model) | ||||
|  | ||||
| default_vision_config = { | ||||
|         "hidden_size": 1152, | ||||
|         "image_size": 980, | ||||
|         "intermediate_size": 4304, | ||||
|         "model_type": "idefics2", | ||||
|         "num_attention_heads": 16, | ||||
|         "num_hidden_layers": 27, | ||||
|         "patch_size": 14, | ||||
|     } | ||||
| vision_config = Idefics2VisionConfig(**default_vision_config) | ||||
| model = Idefics2VisionTransformer(vision_config) | ||||
|  | ||||
| processor = None | ||||
| # if model.attn_pool is not None: | ||||
| #     model.attn_pool = torch.nn.Identity() | ||||
|  | ||||
| # model.blocks = model.blocks[:-1] | ||||
| model.load_state_dict(torch.load(os.path.join(dir_model, "minicpmv.clip"))) | ||||
|  | ||||
| fname_middle = None | ||||
| has_text_encoder = True | ||||
| has_vision_encoder = True | ||||
| has_minicpmv_projector = False | ||||
| if args.text_only: | ||||
|     fname_middle = "text-" | ||||
|     has_vision_encoder = False | ||||
| elif args.minicpmv_projector is not None: | ||||
|     fname_middle = "mmproj-" | ||||
|     has_text_encoder = False | ||||
|     has_minicpmv_projector = True | ||||
| elif args.vision_only: | ||||
|     fname_middle = "vision-" | ||||
|     has_text_encoder = False | ||||
| else: | ||||
|     fname_middle = "" | ||||
|  | ||||
| output_dir = args.output_dir if args.output_dir is not None else dir_model | ||||
| os.makedirs(output_dir, exist_ok=True) | ||||
| output_prefix = os.path.basename(output_dir).replace("ggml_", "") | ||||
| fname_out = os.path.join(output_dir, f"{fname_middle}model-{ftype_str[ftype]}.gguf") | ||||
| fout = GGUFWriter(path=fname_out, arch="clip") | ||||
|  | ||||
| fout.add_bool("clip.has_text_encoder", has_text_encoder) | ||||
| fout.add_bool("clip.has_vision_encoder", has_vision_encoder) | ||||
| fout.add_bool("clip.has_minicpmv_projector", has_minicpmv_projector) | ||||
| fout.add_file_type(ftype) | ||||
| if args.text_only: | ||||
|     fout.add_description("text-only CLIP model") | ||||
| elif args.vision_only and not has_minicpmv_projector: | ||||
|     fout.add_description("vision-only CLIP model") | ||||
| elif has_minicpmv_projector: | ||||
|     fout.add_description("image encoder for MiniCPM-V") | ||||
|     # add projector type | ||||
|     fout.add_string("clip.projector_type", "resampler") | ||||
| else: | ||||
|     fout.add_description("two-tower CLIP model") | ||||
|  | ||||
| if has_vision_encoder: | ||||
|     # vision_model hparams | ||||
|     fout.add_uint32("clip.vision.image_size", 448) | ||||
|     fout.add_uint32("clip.vision.patch_size", 14) | ||||
|     fout.add_uint32(add_key_str(KEY_EMBEDDING_LENGTH, VISION), 1152) | ||||
|     fout.add_uint32(add_key_str(KEY_FEED_FORWARD_LENGTH, VISION), 4304) | ||||
|     fout.add_uint32("clip.vision.projection_dim", 0) | ||||
|     fout.add_uint32(add_key_str(KEY_ATTENTION_HEAD_COUNT, VISION), 16) | ||||
|     fout.add_float32(add_key_str(KEY_ATTENTION_LAYERNORM_EPS, VISION), 1e-6) | ||||
|     block_count = 26 | ||||
|     fout.add_uint32(add_key_str(KEY_BLOCK_COUNT, VISION), block_count) | ||||
|  | ||||
|     if processor is not None: | ||||
|         image_mean = processor.image_processor.image_mean if args.image_mean is None or args.image_mean == default_image_mean else args.image_mean | ||||
|         image_std = processor.image_processor.image_std if args.image_std is None or args.image_std == default_image_std else args.image_std | ||||
|     else: | ||||
|         image_mean = args.image_mean if args.image_mean is not None else default_image_mean | ||||
|         image_std = args.image_std if args.image_std is not None else default_image_std | ||||
|     fout.add_array("clip.vision.image_mean", image_mean) | ||||
|     fout.add_array("clip.vision.image_std", image_std) | ||||
|  | ||||
| use_gelu = True | ||||
| fout.add_bool("clip.use_gelu", use_gelu) | ||||
|  | ||||
| def get_1d_sincos_pos_embed_from_grid(embed_dim, pos): | ||||
|     """ | ||||
|     embed_dim: output dimension for each position | ||||
|     pos: a list of positions to be encoded: size (M,) | ||||
|     out: (M, D) | ||||
|     """ | ||||
|     assert embed_dim % 2 == 0 | ||||
|     omega = np.arange(embed_dim // 2, dtype=np.float32) | ||||
|     omega /= embed_dim / 2. | ||||
|     omega = 1. / 10000 ** omega  # (D/2,) | ||||
|  | ||||
|     pos = pos.reshape(-1)  # (M,) | ||||
|     out = np.einsum('m,d->md', pos, omega)  # (M, D/2), outer product | ||||
|  | ||||
|     emb_sin = np.sin(out)  # (M, D/2) | ||||
|     emb_cos = np.cos(out)  # (M, D/2) | ||||
|  | ||||
|     emb = np.concatenate([emb_sin, emb_cos], axis=1)  # (M, D) | ||||
|     return emb | ||||
|  | ||||
| def get_2d_sincos_pos_embed_from_grid(embed_dim, grid): | ||||
|     assert embed_dim % 2 == 0 | ||||
|  | ||||
|     # use half of dimensions to encode grid_h | ||||
|     emb_h = get_1d_sincos_pos_embed_from_grid(embed_dim // 2, grid[0])  # (H*W, D/2) | ||||
|     emb_w = get_1d_sincos_pos_embed_from_grid(embed_dim // 2, grid[1])  # (H*W, D/2) | ||||
|  | ||||
|     emb = np.concatenate([emb_h, emb_w], axis=1)  # (H*W, D) | ||||
|     return emb | ||||
|  | ||||
|  | ||||
| # https://github.com/facebookresearch/mae/blob/efb2a8062c206524e35e47d04501ed4f544c0ae8/util/pos_embed.py#L20 | ||||
| def get_2d_sincos_pos_embed(embed_dim, grid_size, cls_token=False): | ||||
|     """ | ||||
|     grid_size: int of the grid height and width | ||||
|     return: | ||||
|     pos_embed: [grid_size*grid_size, embed_dim] or [1+grid_size*grid_size, embed_dim] (w/ or w/o cls_token) | ||||
|     """ | ||||
|     if isinstance(grid_size, int): | ||||
|         grid_h_size, grid_w_size = grid_size, grid_size | ||||
|     else: | ||||
|         grid_h_size, grid_w_size = grid_size[0], grid_size[1] | ||||
|  | ||||
|     grid_h = np.arange(grid_h_size, dtype=np.float32) | ||||
|     grid_w = np.arange(grid_w_size, dtype=np.float32) | ||||
|     grid = np.meshgrid(grid_w, grid_h)  # here w goes first | ||||
|     grid = np.stack(grid, axis=0) | ||||
|  | ||||
|     grid = grid.reshape([2, 1, grid_h_size, grid_w_size]) | ||||
|     pos_embed = get_2d_sincos_pos_embed_from_grid(embed_dim, grid) | ||||
|     if cls_token: | ||||
|         pos_embed = np.concatenate([np.zeros([1, embed_dim]), pos_embed], axis=0) | ||||
|     return pos_embed | ||||
|  | ||||
| def _replace_name_resampler(s, v): | ||||
|     if re.match("resampler.pos_embed", s): | ||||
|         return { | ||||
|             s: v, | ||||
|             re.sub("pos_embed", "pos_embed_k", s): torch.from_numpy(get_2d_sincos_pos_embed(4096, (70, 70))), | ||||
|         } | ||||
|     if re.match("resampler.proj", s): | ||||
|         return { | ||||
|             re.sub("proj", "pos_embed_k", s): torch.from_numpy(get_2d_sincos_pos_embed(4096, (70, 70))), | ||||
|             re.sub("proj", "proj.weight", s): v.transpose(-1, -2).contiguous(), | ||||
|         } | ||||
|     if re.match("resampler.attn.in_proj_.*", s): | ||||
|         return { | ||||
|             re.sub("attn.in_proj_", "attn.q.", s): v.chunk(3, dim=0)[0], | ||||
|             re.sub("attn.in_proj_", "attn.k.", s): v.chunk(3, dim=0)[1], | ||||
|             re.sub("attn.in_proj_", "attn.v.", s): v.chunk(3, dim=0)[2], | ||||
|         } | ||||
|     return {s: v} | ||||
|  | ||||
| if has_minicpmv_projector: | ||||
|     projector = torch.load(args.minicpmv_projector) | ||||
|     new_state_dict = {} | ||||
|     for k, v in projector.items(): | ||||
|         kvs = _replace_name_resampler(k, v) | ||||
|         for nk, nv in kvs.items(): | ||||
|             new_state_dict[nk] = nv | ||||
|     projector = new_state_dict | ||||
|     ftype_cur = 0 | ||||
|     for name, data in projector.items(): | ||||
|         name = get_tensor_name(name) | ||||
|         data = data.squeeze().numpy() | ||||
|  | ||||
|         n_dims = len(data.shape) | ||||
|         if ftype == 1: | ||||
|             if name[-7:] == ".weight" and n_dims == 2: | ||||
|                 print("  Converting to float16") | ||||
|                 data = data.astype(np.float16) | ||||
|                 ftype_cur = 1 | ||||
|             else: | ||||
|                 print("  Converting to float32") | ||||
|                 data = data.astype(np.float32) | ||||
|                 ftype_cur = 0 | ||||
|         else: | ||||
|             if data.dtype != np.float32: | ||||
|                 print("  Converting to float32") | ||||
|                 data = data.astype(np.float32) | ||||
|                 ftype_cur = 0 | ||||
|  | ||||
|         fout.add_tensor(name, data) | ||||
|         print(f"{name} - {ftype_str[ftype_cur]} - shape = {data.shape}") | ||||
|  | ||||
|     print("Projector tensors added\n") | ||||
|  | ||||
| def _replace_name(s, v): | ||||
|     s = "vision_model." + s | ||||
|     if re.match("vision_model.embeddings.position_embedding", s): | ||||
|         v = v.unsqueeze(0) | ||||
|         return {s: v} | ||||
|  | ||||
|     return {s: v} | ||||
|  | ||||
| state_dict = model.state_dict() | ||||
| new_state_dict = {} | ||||
| for k, v in state_dict.items(): | ||||
|     kvs = _replace_name(k, v) | ||||
|     for nk, nv in kvs.items(): | ||||
|         new_state_dict[nk] = nv | ||||
| state_dict = new_state_dict | ||||
| for name, data in state_dict.items(): | ||||
|     if should_skip_tensor(name, has_text_encoder, has_vision_encoder, has_minicpmv_projector): | ||||
|         # we don't need this | ||||
|         print(f"skipping parameter: {name}") | ||||
|         continue | ||||
|  | ||||
|     name = get_tensor_name(name) | ||||
|     data = data.squeeze().numpy() | ||||
|  | ||||
|     n_dims = len(data.shape) | ||||
|  | ||||
|     # ftype == 0 -> float32, ftype == 1 -> float16 | ||||
|     ftype_cur = 0 | ||||
|     if n_dims == 4: | ||||
|         print(f"tensor {name} is always saved in f16") | ||||
|         data = data.astype(np.float16) | ||||
|         ftype_cur = 1 | ||||
|     elif ftype == 1: | ||||
|         if name[-7:] == ".weight" and n_dims == 2: | ||||
|             print("  Converting to float16") | ||||
|             data = data.astype(np.float16) | ||||
|             ftype_cur = 1 | ||||
|         else: | ||||
|             print("  Converting to float32") | ||||
|             data = data.astype(np.float32) | ||||
|             ftype_cur = 0 | ||||
|     else: | ||||
|         if data.dtype != np.float32: | ||||
|             print("  Converting to float32") | ||||
|             data = data.astype(np.float32) | ||||
|             ftype_cur = 0 | ||||
|  | ||||
|     print(f"{name} - {ftype_str[ftype_cur]} - shape = {data.shape}") | ||||
|     fout.add_tensor(name, data) | ||||
|  | ||||
|  | ||||
| fout.write_header_to_file() | ||||
| fout.write_kv_data_to_file() | ||||
| fout.write_tensors_to_file() | ||||
| fout.close() | ||||
|  | ||||
| print("Done. Output file: " + fname_out) | ||||
		Reference in New Issue
	
	Block a user
	 tc-mb
					tc-mb