mirror of
				https://github.com/ggml-org/llama.cpp.git
				synced 2025-10-30 08:42:00 +00:00 
			
		
		
		
	vulkan: move common FA code to flash_attn_base.comp (#13556)
* vulkan: move common FA code to flash_attn_base.comp * vulkan: move common FA index/stride setup code to flash_attn_base.comp * build fix
This commit is contained in:
		| @@ -9,60 +9,13 @@ | ||||
| #extension GL_KHR_shader_subgroup_shuffle : enable | ||||
|  | ||||
| #include "types.comp" | ||||
| #include "flash_attn_base.comp" | ||||
|  | ||||
| layout(local_size_x_id = 0, local_size_y = 1, local_size_z = 1) in; | ||||
|  | ||||
| layout (constant_id = 0) const uint32_t WorkGroupSize = 128; | ||||
| layout (constant_id = 1) const uint32_t Br = 1; | ||||
| layout (constant_id = 2) const uint32_t Bc = 32; | ||||
| layout (constant_id = 3) const uint32_t D = 32; | ||||
|  | ||||
| layout (constant_id = 5) const uint32_t D_split = 16; | ||||
| const uint32_t D_per_thread = D / D_split; | ||||
|  | ||||
| const uint32_t cols_per_iter = WorkGroupSize / D_split; | ||||
| const uint32_t cols_per_thread = Bc / cols_per_iter; | ||||
|  | ||||
| layout (push_constant) uniform parameter { | ||||
|     uint32_t N; | ||||
|     uint32_t KV; | ||||
|  | ||||
|     uint32_t ne1; | ||||
|     uint32_t ne2; | ||||
|     uint32_t ne3; | ||||
|  | ||||
|     uint32_t neq2; | ||||
|     uint32_t neq3; | ||||
|     uint32_t nek2; | ||||
|     uint32_t nek3; | ||||
|     uint32_t nev2; | ||||
|     uint32_t nev3; | ||||
|     uint32_t nem1; | ||||
|  | ||||
|     uint32_t nb01; | ||||
|     uint32_t nb02; | ||||
|     uint32_t nb03; | ||||
|     uint32_t nb11; | ||||
|     uint32_t nb12; | ||||
|     uint32_t nb13; | ||||
|     uint32_t nb21; | ||||
|     uint32_t nb22; | ||||
|     uint32_t nb23; | ||||
|     uint32_t nb31; | ||||
|  | ||||
|     float scale; | ||||
|     float max_bias; | ||||
|     float logit_softcap; | ||||
|  | ||||
|     uint32_t mask; | ||||
|     uint32_t n_head_log2; | ||||
|     float m0; | ||||
|     float m1; | ||||
|  | ||||
|     uint32_t gqa_ratio; | ||||
|     uint32_t split_kv; | ||||
|     uint32_t k_num; | ||||
| } p; | ||||
|  | ||||
| layout (binding = 0) readonly buffer Q {float data_q[];}; | ||||
| layout (binding = 0) readonly buffer QV4 {vec4 data_qv4[];}; | ||||
| @@ -71,39 +24,6 @@ layout (binding = 1) readonly buffer KV4 {f16vec4 data_kv4[];}; | ||||
| layout (binding = 2) readonly buffer V {float16_t data_v[];}; | ||||
| layout (binding = 2) readonly buffer VV4 {f16vec4 data_vv4[];}; | ||||
| layout (binding = 3) readonly buffer M {float16_t data_m[];}; | ||||
| layout (binding = 4) writeonly buffer O {D_TYPE data_o[];}; | ||||
|  | ||||
| #if defined(A_TYPE_PACKED16) | ||||
| #define BINDING_IDX_K 0 | ||||
| #define BINDING_IDX_V 1 | ||||
| layout (binding = 1) readonly buffer KV_PACKED16 {A_TYPE_PACKED16 data_packed16[];} kv_packed[2]; | ||||
| #endif | ||||
|  | ||||
| #if defined(DATA_A_Q4_0) | ||||
| #define BLOCK_BYTE_SIZE 18 | ||||
|  | ||||
| vec4 dequantize4(uint ib, uint iqs, uint a_offset, uint binding_idx) { | ||||
|     uint vui_lo = uint(kv_packed[binding_idx].data_packed16[a_offset + ib].qs[(iqs & 0xF) / 2 + 0]); | ||||
|     uint vui_hi = uint(kv_packed[binding_idx].data_packed16[a_offset + ib].qs[(iqs & 0xF) / 2 + 1]); | ||||
|     uint shift = (iqs & 0x10) >> 2; | ||||
|     vui_lo >>= shift; | ||||
|     vui_hi >>= shift; | ||||
|  | ||||
|     return float(kv_packed[binding_idx].data_packed16[a_offset + ib].d) * (vec4(vui_lo & 0xF, (vui_lo >> 8) & 0xF, vui_hi & 0xF, (vui_hi >> 8) & 0xF) - 8.0f); | ||||
| } | ||||
| #endif | ||||
|  | ||||
| #if defined(DATA_A_Q8_0) | ||||
| #define BLOCK_BYTE_SIZE 34 | ||||
| vec4 dequantize4(uint ib, uint iqs, uint a_offset, uint binding_idx) { | ||||
|     const i8vec2 v0 = unpack8(int32_t(kv_packed[binding_idx].data_packed16[a_offset + ib].qs[iqs / 2])).xy; // vec4 used due to #12147 | ||||
|     const i8vec2 v1 = unpack8(int32_t(kv_packed[binding_idx].data_packed16[a_offset + ib].qs[iqs / 2 + 1])).xy; | ||||
|  | ||||
|     return float(kv_packed[binding_idx].data_packed16[a_offset + ib].d) * vec4(v0.x, v0.y, v1.x, v1.y); | ||||
| } | ||||
| #endif | ||||
|  | ||||
| #define CEIL_DIV(a, b) (((a) + (b) - 1) / (b)) | ||||
|  | ||||
| // Store the output when doing grouped query attention. | ||||
| // Rows index by Q's dimension 2, and the first N rows are valid. | ||||
| @@ -114,27 +34,6 @@ D_TYPE perElemOpGqaStore(const in uint32_t r, const in uint32_t c, const in D_TY | ||||
|     return elem; | ||||
| } | ||||
|  | ||||
| // Store column zero. This is used to save per-row m and L values for split_k. | ||||
| ACC_TYPE perElemOpStoreCol0(const in uint32_t r, const in uint32_t c, const in ACC_TYPE elem, const in uint32_t o_offset, const in uint32_t iq2, const in uint32_t N) | ||||
| { | ||||
|     if (r < N && c == 0) { | ||||
|         uint32_t offset = iq2 + r; | ||||
|         data_o[o_offset + offset] = D_TYPE(elem); | ||||
|     } | ||||
|     return elem; | ||||
| } | ||||
|  | ||||
| // Load the slope matrix, indexed by Q's dimension 2. | ||||
| ACC_TYPE perElemOpComputeSlope(const in uint32_t r, const in uint32_t c, const in ACC_TYPE elem, const in uint32_t iq2) | ||||
| { | ||||
|     const uint32_t h = iq2 + (r % p.gqa_ratio); | ||||
|  | ||||
|     const ACC_TYPE base = ACC_TYPE(h < p.n_head_log2 ? p.m0 : p.m1); | ||||
|     const int      exph = int(h < p.n_head_log2 ? h + 1 : 2*(h - p.n_head_log2) + 1); | ||||
|  | ||||
|     return ACC_TYPE(pow(base, ACC_TYPE(exph))); | ||||
| } | ||||
|  | ||||
| shared FLOAT_TYPE tmpsh[WorkGroupSize]; | ||||
| shared vec4 tmpshv4[WorkGroupSize]; | ||||
|  | ||||
| @@ -146,58 +45,12 @@ void main() { | ||||
|     init_iq_shmem(gl_WorkGroupSize); | ||||
| #endif | ||||
|  | ||||
|     const uint32_t tid = gl_LocalInvocationIndex; | ||||
|     const uint32_t N = p.N; | ||||
|     const uint32_t KV = p.KV; | ||||
|     init_indices(); | ||||
|  | ||||
|     const uint32_t tid = gl_LocalInvocationIndex; | ||||
|     const uint32_t d_tid = gl_LocalInvocationIndex % D_split; | ||||
|     const uint32_t col_tid = gl_LocalInvocationIndex / D_split; | ||||
|  | ||||
|     uint32_t i = gl_WorkGroupID.x; | ||||
|     uint32_t split_k_index = 0; | ||||
|  | ||||
|     if (p.k_num > 1) { | ||||
|         i = 0; | ||||
|         split_k_index = gl_WorkGroupID.x; | ||||
|     } | ||||
|  | ||||
|     const uint32_t Tr = CEIL_DIV(N, Br); | ||||
|  | ||||
|     const uint32_t start_j = split_k_index * p.split_kv / Bc; | ||||
|     const uint32_t end_j = CEIL_DIV(min(KV, (split_k_index + 1) * p.split_kv), Bc); | ||||
|  | ||||
|     // When not using grouped query attention, all rows share the same iq2, equal to gl_WorkGroupID.y. | ||||
|     // When using grouped query attention, each workgroup does gqa_ratio consecutive values of iq2. | ||||
|     const uint32_t iq2 = gl_WorkGroupID.y * p.gqa_ratio; | ||||
|     const uint32_t iq3 = gl_WorkGroupID.z; | ||||
|  | ||||
|     // broadcast factors | ||||
|     const uint32_t rk2 = p.neq2/p.nek2; | ||||
|     const uint32_t rk3 = p.neq3/p.nek3; | ||||
|  | ||||
|     const uint32_t rv2 = p.neq2/p.nev2; | ||||
|     const uint32_t rv3 = p.neq3/p.nev3; | ||||
|  | ||||
|     // k indices | ||||
|     const uint32_t ik3 = iq3 / rk3; | ||||
|     const uint32_t ik2 = iq2 / rk2; | ||||
|  | ||||
|     // v indices | ||||
|     const uint32_t iv3 = iq3 / rv3; | ||||
|     const uint32_t iv2 = iq2 / rv2; | ||||
|  | ||||
|     // nb?1 are already divided by the type size and are in units of elements. | ||||
|     // When using grouped query attention, Q is indexed by iq2, so the stride | ||||
|     // should be nb02 (which is in bytes). | ||||
|     uint32_t q_stride = p.gqa_ratio > 1 ? (p.nb02 / 4) : p.nb01; | ||||
|     uint32_t k_stride = p.nb11; | ||||
|     uint32_t v_stride = p.nb21; | ||||
|     // When using grouped query attention, all rows use the same mask (stride 0). | ||||
|     // "p.gqa_ratio >> 16" is just a roundabout way of writing zero | ||||
|     // that prevents the compiler from folding the "&" through the select | ||||
|     // and breaking the alignment detection. | ||||
|     uint32_t m_stride = (p.gqa_ratio > 1) ? (p.gqa_ratio >> 16) : KV; | ||||
|  | ||||
|     uint32_t q_offset = (iq2*p.nb02+iq3*p.nb03) / 4; | ||||
|  | ||||
|     [[unroll]] for (uint32_t idx = 0; idx < Br * D / 4; idx += gl_WorkGroupSize.x) { | ||||
|   | ||||
							
								
								
									
										162
									
								
								ggml/src/ggml-vulkan/vulkan-shaders/flash_attn_base.comp
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										162
									
								
								ggml/src/ggml-vulkan/vulkan-shaders/flash_attn_base.comp
									
									
									
									
									
										Normal file
									
								
							| @@ -0,0 +1,162 @@ | ||||
|  | ||||
| layout(local_size_x_id = 0, local_size_y = 1, local_size_z = 1) in; | ||||
|  | ||||
| layout (constant_id = 0) const uint32_t WorkGroupSize = 128; | ||||
| layout (constant_id = 1) const uint32_t Br = 1; | ||||
| layout (constant_id = 2) const uint32_t Bc = 32; | ||||
| layout (constant_id = 3) const uint32_t D = 32; | ||||
| layout (constant_id = 4) const uint32_t Clamp = 0; | ||||
| layout (constant_id = 5) const uint32_t D_split = 16; | ||||
|  | ||||
|  | ||||
| layout (push_constant) uniform parameter { | ||||
|     uint32_t N; | ||||
|     uint32_t KV; | ||||
|  | ||||
|     uint32_t ne1; | ||||
|     uint32_t ne2; | ||||
|     uint32_t ne3; | ||||
|  | ||||
|     uint32_t neq2; | ||||
|     uint32_t neq3; | ||||
|     uint32_t nek2; | ||||
|     uint32_t nek3; | ||||
|     uint32_t nev2; | ||||
|     uint32_t nev3; | ||||
|     uint32_t nem1; | ||||
|  | ||||
|     uint32_t nb01; | ||||
|     uint32_t nb02; | ||||
|     uint32_t nb03; | ||||
|     uint32_t nb11; | ||||
|     uint32_t nb12; | ||||
|     uint32_t nb13; | ||||
|     uint32_t nb21; | ||||
|     uint32_t nb22; | ||||
|     uint32_t nb23; | ||||
|     uint32_t nb31; | ||||
|  | ||||
|     float scale; | ||||
|     float max_bias; | ||||
|     float logit_softcap; | ||||
|  | ||||
|     uint32_t mask; | ||||
|     uint32_t n_head_log2; | ||||
|     float m0; | ||||
|     float m1; | ||||
|  | ||||
|     uint32_t gqa_ratio; | ||||
|     uint32_t split_kv; | ||||
|     uint32_t k_num; | ||||
| } p; | ||||
|  | ||||
| layout (binding = 4) writeonly buffer O {D_TYPE data_o[];}; | ||||
|  | ||||
| #if defined(A_TYPE_PACKED16) | ||||
| #define BINDING_IDX_K 0 | ||||
| #define BINDING_IDX_V 1 | ||||
| layout (binding = 1) readonly buffer KV_PACKED16 {A_TYPE_PACKED16 data_packed16[];} kv_packed[2]; | ||||
| #endif | ||||
|  | ||||
| #if defined(DATA_A_Q4_0) | ||||
| #define BLOCK_BYTE_SIZE 18 | ||||
|  | ||||
| vec4 dequantize4(uint ib, uint iqs, uint a_offset, uint binding_idx) { | ||||
|     uint vui_lo = uint(kv_packed[binding_idx].data_packed16[a_offset + ib].qs[(iqs & 0xF) / 2 + 0]); | ||||
|     uint vui_hi = uint(kv_packed[binding_idx].data_packed16[a_offset + ib].qs[(iqs & 0xF) / 2 + 1]); | ||||
|     uint shift = (iqs & 0x10) >> 2; | ||||
|     vui_lo >>= shift; | ||||
|     vui_hi >>= shift; | ||||
|  | ||||
|     return float(kv_packed[binding_idx].data_packed16[a_offset + ib].d) * (vec4(vui_lo & 0xF, (vui_lo >> 8) & 0xF, vui_hi & 0xF, (vui_hi >> 8) & 0xF) - 8.0f); | ||||
| } | ||||
| #endif | ||||
|  | ||||
| #if defined(DATA_A_Q8_0) | ||||
| #define BLOCK_BYTE_SIZE 34 | ||||
| vec4 dequantize4(uint ib, uint iqs, uint a_offset, uint binding_idx) { | ||||
|     const i8vec2 v0 = unpack8(int32_t(kv_packed[binding_idx].data_packed16[a_offset + ib].qs[iqs / 2])).xy; // vec4 used due to #12147 | ||||
|     const i8vec2 v1 = unpack8(int32_t(kv_packed[binding_idx].data_packed16[a_offset + ib].qs[iqs / 2 + 1])).xy; | ||||
|  | ||||
|     return float(kv_packed[binding_idx].data_packed16[a_offset + ib].d) * vec4(v0.x, v0.y, v1.x, v1.y); | ||||
| } | ||||
| #endif | ||||
|  | ||||
| #define CEIL_DIV(a, b) (((a) + (b) - 1) / (b)) | ||||
|  | ||||
|  | ||||
| // Store column zero. This is used to save per-row m and L values for split_k. | ||||
| ACC_TYPE perElemOpStoreCol0(const in uint32_t r, const in uint32_t c, const in ACC_TYPE elem, const in uint32_t o_offset, const in uint32_t iq2, const in uint32_t N) | ||||
| { | ||||
|     if (r < N && c == 0) { | ||||
|         uint32_t offset = iq2 + r; | ||||
|         data_o[o_offset + offset] = D_TYPE(elem); | ||||
|     } | ||||
|     return elem; | ||||
| } | ||||
|  | ||||
| // Load the slope matrix, indexed by Q's dimension 2. | ||||
| ACC_TYPE perElemOpComputeSlope(const in uint32_t r, const in uint32_t c, const in ACC_TYPE elem, const in uint32_t iq2) | ||||
| { | ||||
|     const uint32_t h = iq2 + (r % p.gqa_ratio); | ||||
|  | ||||
|     const ACC_TYPE base = ACC_TYPE(h < p.n_head_log2 ? p.m0 : p.m1); | ||||
|     const int      exph = int(h < p.n_head_log2 ? h + 1 : 2*(h - p.n_head_log2) + 1); | ||||
|  | ||||
|     return ACC_TYPE(pow(base, ACC_TYPE(exph))); | ||||
| } | ||||
|  | ||||
| uint32_t i, N, KV, split_k_index, Tr, start_j, end_j, | ||||
|          iq2, iq3, rk2, rk3, rv2, rv3, ik2, ik3, iv2, iv3, | ||||
|          q_stride, k_stride, v_stride, m_stride; | ||||
|  | ||||
| void init_indices() | ||||
| { | ||||
|     N = p.N; | ||||
|     KV = p.KV; | ||||
|  | ||||
|     i = gl_WorkGroupID.x; | ||||
|     split_k_index = 0; | ||||
|  | ||||
|     if (p.k_num > 1) { | ||||
|         i = 0; | ||||
|         split_k_index = gl_WorkGroupID.x; | ||||
|     } | ||||
|  | ||||
|     Tr = CEIL_DIV(N, Br); | ||||
|  | ||||
|     start_j = split_k_index * p.split_kv / Bc; | ||||
|     end_j = CEIL_DIV(min(KV, (split_k_index + 1) * p.split_kv), Bc); | ||||
|  | ||||
|     // When not using grouped query attention, all rows share the same iq2, equal to gl_WorkGroupID.y. | ||||
|     // When using grouped query attention, each workgroup does gqa_ratio consecutive values of iq2. | ||||
|     iq2 = gl_WorkGroupID.y * p.gqa_ratio; | ||||
|     iq3 = gl_WorkGroupID.z; | ||||
|  | ||||
|     // broadcast factors | ||||
|     rk2 = p.neq2/p.nek2; | ||||
|     rk3 = p.neq3/p.nek3; | ||||
|  | ||||
|     rv2 = p.neq2/p.nev2; | ||||
|     rv3 = p.neq3/p.nev3; | ||||
|  | ||||
|     // k indices | ||||
|     ik3 = iq3 / rk3; | ||||
|     ik2 = iq2 / rk2; | ||||
|  | ||||
|     // v indices | ||||
|     iv3 = iq3 / rv3; | ||||
|     iv2 = iq2 / rv2; | ||||
|  | ||||
|     // nb?1 are already divided by the type size and are in units of elements. | ||||
|     // When using grouped query attention, Q is indexed by iq2, so the stride | ||||
|     // should be nb02 (which is in bytes). | ||||
|     q_stride = p.gqa_ratio > 1 ? (p.nb02 / 4) : p.nb01; | ||||
|     k_stride = p.nb11; | ||||
|     v_stride = p.nb21; | ||||
|     // When using grouped query attention, all rows use the same mask (stride 0). | ||||
|     // "p.gqa_ratio >> 16" is just a roundabout way of writing zero | ||||
|     // that prevents the compiler from folding the "&" through the select | ||||
|     // and breaking the alignment detection. | ||||
|     m_stride = (p.gqa_ratio > 1) ? (p.gqa_ratio >> 16) : KV; | ||||
| } | ||||
| @@ -11,14 +11,7 @@ | ||||
| #extension GL_KHR_cooperative_matrix : enable | ||||
|  | ||||
| #include "types.comp" | ||||
|  | ||||
| layout(local_size_x_id = 0, local_size_y = 1, local_size_z = 1) in; | ||||
|  | ||||
| layout (constant_id = 1) const uint32_t Br = 1; | ||||
| layout (constant_id = 2) const uint32_t Bc = 32; | ||||
| layout (constant_id = 3) const uint32_t D = 32; | ||||
|  | ||||
| layout (constant_id = 5) const uint32_t D_split = 16; | ||||
| #include "flash_attn_base.comp" | ||||
|  | ||||
| const uint32_t D_per_thread = D / D_split; | ||||
| const uint32_t row_split = 4; | ||||
| @@ -26,46 +19,6 @@ const uint32_t rows_per_thread = Br / row_split; | ||||
| const uint32_t cols_per_iter = gl_WorkGroupSize.x / D_split / row_split; | ||||
| const uint32_t cols_per_thread = Bc / cols_per_iter; | ||||
|  | ||||
| layout (push_constant) uniform parameter { | ||||
|     uint32_t N; | ||||
|     uint32_t KV; | ||||
|  | ||||
|     uint32_t ne1; | ||||
|     uint32_t ne2; | ||||
|     uint32_t ne3; | ||||
|  | ||||
|     uint32_t neq2; | ||||
|     uint32_t neq3; | ||||
|     uint32_t nek2; | ||||
|     uint32_t nek3; | ||||
|     uint32_t nev2; | ||||
|     uint32_t nev3; | ||||
|     uint32_t nem1; | ||||
|  | ||||
|     uint32_t nb01; | ||||
|     uint32_t nb02; | ||||
|     uint32_t nb03; | ||||
|     uint32_t nb11; | ||||
|     uint32_t nb12; | ||||
|     uint32_t nb13; | ||||
|     uint32_t nb21; | ||||
|     uint32_t nb22; | ||||
|     uint32_t nb23; | ||||
|     uint32_t nb31; | ||||
|  | ||||
|     float scale; | ||||
|     float max_bias; | ||||
|     float logit_softcap; | ||||
|  | ||||
|     uint32_t mask; | ||||
|     uint32_t n_head_log2; | ||||
|     float m0; | ||||
|     float m1; | ||||
|  | ||||
|     uint32_t gqa_ratio; | ||||
|     uint32_t split_kv; | ||||
|     uint32_t k_num; | ||||
| } p; | ||||
|  | ||||
| layout (binding = 0) readonly buffer Q {float data_q[];}; | ||||
| layout (binding = 0) readonly buffer QV4 {vec4 data_qv4[];}; | ||||
| @@ -74,39 +27,6 @@ layout (binding = 1) readonly buffer KV4 {f16vec4 data_kv4[];}; | ||||
| layout (binding = 2) readonly buffer V {float16_t data_v[];}; | ||||
| layout (binding = 2) readonly buffer VV4 {f16vec4 data_vv4[];}; | ||||
| layout (binding = 3) readonly buffer M {float16_t data_m[];}; | ||||
| layout (binding = 4) writeonly buffer O {D_TYPE data_o[];}; | ||||
|  | ||||
| #if defined(A_TYPE_PACKED16) | ||||
| #define BINDING_IDX_K 0 | ||||
| #define BINDING_IDX_V 1 | ||||
| layout (binding = 1) readonly buffer KV_PACKED16 {A_TYPE_PACKED16 data_packed16[];} kv_packed[2]; | ||||
| #endif | ||||
|  | ||||
| #if defined(DATA_A_Q4_0) | ||||
| #define BLOCK_BYTE_SIZE 18 | ||||
|  | ||||
| vec4 dequantize4(uint ib, uint iqs, uint a_offset, uint binding_idx) { | ||||
|     uint vui_lo = uint(kv_packed[binding_idx].data_packed16[a_offset + ib].qs[(iqs & 0xF) / 2 + 0]); | ||||
|     uint vui_hi = uint(kv_packed[binding_idx].data_packed16[a_offset + ib].qs[(iqs & 0xF) / 2 + 1]); | ||||
|     uint shift = (iqs & 0x10) >> 2; | ||||
|     vui_lo >>= shift; | ||||
|     vui_hi >>= shift; | ||||
|  | ||||
|     return float(kv_packed[binding_idx].data_packed16[a_offset + ib].d) * (vec4(vui_lo & 0xF, (vui_lo >> 8) & 0xF, vui_hi & 0xF, (vui_hi >> 8) & 0xF) - 8.0f); | ||||
| } | ||||
| #endif | ||||
|  | ||||
| #if defined(DATA_A_Q8_0) | ||||
| #define BLOCK_BYTE_SIZE 34 | ||||
| vec4 dequantize4(uint ib, uint iqs, uint a_offset, uint binding_idx) { | ||||
|     const i8vec2 v0 = unpack8(int32_t(kv_packed[binding_idx].data_packed16[a_offset + ib].qs[iqs / 2])).xy; // vec4 used due to #12147 | ||||
|     const i8vec2 v1 = unpack8(int32_t(kv_packed[binding_idx].data_packed16[a_offset + ib].qs[iqs / 2 + 1])).xy; | ||||
|  | ||||
|     return float(kv_packed[binding_idx].data_packed16[a_offset + ib].d) * vec4(v0.x, v0.y, v1.x, v1.y); | ||||
| } | ||||
| #endif | ||||
|  | ||||
| #define CEIL_DIV(a, b) (((a) + (b) - 1) / (b)) | ||||
|  | ||||
| // Store the output when doing grouped query attention. | ||||
| // Rows index by Q's dimension 2, and the first N rows are valid. | ||||
| @@ -117,27 +37,6 @@ D_TYPE perElemOpGqaStore(const in uint32_t r, const in uint32_t c, const in D_TY | ||||
|     return elem; | ||||
| } | ||||
|  | ||||
| // Store column zero. This is used to save per-row m and L values for split_k. | ||||
| ACC_TYPE perElemOpStoreCol0(const in uint32_t r, const in uint32_t c, const in ACC_TYPE elem, const in uint32_t o_offset, const in uint32_t iq2, const in uint32_t N) | ||||
| { | ||||
|     if (r < N && c == 0) { | ||||
|         uint32_t offset = iq2 + r; | ||||
|         data_o[o_offset + offset] = D_TYPE(elem); | ||||
|     } | ||||
|     return elem; | ||||
| } | ||||
|  | ||||
| // Load the slope matrix, indexed by Q's dimension 2. | ||||
| ACC_TYPE perElemOpComputeSlope(const in uint32_t r, const in uint32_t c, const in ACC_TYPE elem, const in uint32_t iq2) | ||||
| { | ||||
|     const uint32_t h = iq2 + (r % p.gqa_ratio); | ||||
|  | ||||
|     const ACC_TYPE base = ACC_TYPE(h < p.n_head_log2 ? p.m0 : p.m1); | ||||
|     const int      exph = int(h < p.n_head_log2 ? h + 1 : 2*(h - p.n_head_log2) + 1); | ||||
|  | ||||
|     return ACC_TYPE(pow(base, ACC_TYPE(exph))); | ||||
| } | ||||
|  | ||||
| // These need to be supported N,M values for a MatBc x MatBr x 16 coopmatmuladd | ||||
| const uint32_t MatBr = 16; | ||||
| const uint32_t MatBc = 16; | ||||
| @@ -162,9 +61,9 @@ void main() { | ||||
|     init_iq_shmem(gl_WorkGroupSize); | ||||
| #endif | ||||
|  | ||||
|     init_indices(); | ||||
|  | ||||
|     const uint32_t tid = gl_LocalInvocationIndex; | ||||
|     const uint32_t N = p.N; | ||||
|     const uint32_t KV = p.KV; | ||||
|  | ||||
|     const uint32_t threads_per_rowgroup = gl_WorkGroupSize.x / row_split; | ||||
|     const uint32_t row_tid = gl_LocalInvocationIndex / threads_per_rowgroup; | ||||
| @@ -173,51 +72,6 @@ void main() { | ||||
|  | ||||
| #define tile_row(r) (row_tid * rows_per_thread + (r)) | ||||
|  | ||||
|     uint32_t i = gl_WorkGroupID.x; | ||||
|     uint32_t split_k_index = 0; | ||||
|  | ||||
|     if (p.k_num > 1) { | ||||
|         i = 0; | ||||
|         split_k_index = gl_WorkGroupID.x; | ||||
|     } | ||||
|  | ||||
|     const uint32_t Tr = CEIL_DIV(N, Br); | ||||
|  | ||||
|     const uint32_t start_j = split_k_index * p.split_kv / Bc; | ||||
|     const uint32_t end_j = CEIL_DIV(min(KV, (split_k_index + 1) * p.split_kv), Bc); | ||||
|  | ||||
|     // When not using grouped query attention, all rows share the same iq2, equal to gl_WorkGroupID.y. | ||||
|     // When using grouped query attention, each workgroup does gqa_ratio consecutive values of iq2. | ||||
|     const uint32_t iq2 = gl_WorkGroupID.y * p.gqa_ratio; | ||||
|     const uint32_t iq3 = gl_WorkGroupID.z; | ||||
|  | ||||
|     // broadcast factors | ||||
|     const uint32_t rk2 = p.neq2/p.nek2; | ||||
|     const uint32_t rk3 = p.neq3/p.nek3; | ||||
|  | ||||
|     const uint32_t rv2 = p.neq2/p.nev2; | ||||
|     const uint32_t rv3 = p.neq3/p.nev3; | ||||
|  | ||||
|     // k indices | ||||
|     const uint32_t ik3 = iq3 / rk3; | ||||
|     const uint32_t ik2 = iq2 / rk2; | ||||
|  | ||||
|     // v indices | ||||
|     const uint32_t iv3 = iq3 / rv3; | ||||
|     const uint32_t iv2 = iq2 / rv2; | ||||
|  | ||||
|     // nb?1 are already divided by the type size and are in units of elements. | ||||
|     // When using grouped query attention, Q is indexed by iq2, so the stride | ||||
|     // should be nb02 (which is in bytes). | ||||
|     uint32_t q_stride = p.gqa_ratio > 1 ? (p.nb02 / 4) : p.nb01; | ||||
|     uint32_t k_stride = p.nb11; | ||||
|     uint32_t v_stride = p.nb21; | ||||
|     // When using grouped query attention, all rows use the same mask (stride 0). | ||||
|     // "p.gqa_ratio >> 16" is just a roundabout way of writing zero | ||||
|     // that prevents the compiler from folding the "&" through the select | ||||
|     // and breaking the alignment detection. | ||||
|     uint32_t m_stride = (p.gqa_ratio > 1) ? (p.gqa_ratio >> 16) : KV; | ||||
|  | ||||
|     uint32_t q_offset = (iq2*p.nb02+iq3*p.nb03) / 4; | ||||
|  | ||||
|     [[unroll]] for (uint32_t idx = 0; idx < Br * D / 4; idx += gl_WorkGroupSize.x) { | ||||
|   | ||||
| @@ -18,62 +18,12 @@ | ||||
|  | ||||
| #include "types.comp" | ||||
| #include "dequant_funcs_cm2.comp" | ||||
|  | ||||
| layout(local_size_x_id = 0, local_size_y = 1, local_size_z = 1) in; | ||||
|  | ||||
| layout (constant_id = 1) const uint32_t Br = 32; | ||||
| layout (constant_id = 2) const uint32_t Bc = 32; | ||||
| layout (constant_id = 3) const uint32_t D = 32; | ||||
| layout (constant_id = 4) const uint32_t Clamp = gl_CooperativeMatrixClampModeConstantNV; | ||||
|  | ||||
| layout (push_constant) uniform parameter { | ||||
|     uint32_t N; | ||||
|     uint32_t KV; | ||||
|  | ||||
|     uint32_t ne1; | ||||
|     uint32_t ne2; | ||||
|     uint32_t ne3; | ||||
|  | ||||
|     uint32_t neq2; | ||||
|     uint32_t neq3; | ||||
|     uint32_t nek2; | ||||
|     uint32_t nek3; | ||||
|     uint32_t nev2; | ||||
|     uint32_t nev3; | ||||
|     uint32_t nem1; | ||||
|  | ||||
|     uint32_t nb01; | ||||
|     uint32_t nb02; | ||||
|     uint32_t nb03; | ||||
|     uint32_t nb11; | ||||
|     uint32_t nb12; | ||||
|     uint32_t nb13; | ||||
|     uint32_t nb21; | ||||
|     uint32_t nb22; | ||||
|     uint32_t nb23; | ||||
|     uint32_t nb31; | ||||
|  | ||||
|     float scale; | ||||
|     float max_bias; | ||||
|     float logit_softcap; | ||||
|  | ||||
|     uint32_t mask; | ||||
|     uint32_t n_head_log2; | ||||
|     float m0; | ||||
|     float m1; | ||||
|  | ||||
|     uint32_t gqa_ratio; | ||||
|     uint32_t split_kv; | ||||
|     uint32_t k_num; | ||||
| } p; | ||||
| #include "flash_attn_base.comp" | ||||
|  | ||||
| layout (binding = 0) readonly buffer Q {uint8_t data_q[];}; | ||||
| layout (binding = 1) readonly buffer K {uint8_t data_k[];}; | ||||
| layout (binding = 2) readonly buffer V {uint8_t data_v[];}; | ||||
| layout (binding = 3) readonly buffer M {uint8_t data_m[];}; | ||||
| layout (binding = 4) writeonly buffer O {D_TYPE data_o[];}; | ||||
|  | ||||
| #define CEIL_DIV(a, b) (((a) + (b) - 1) / (b)) | ||||
|  | ||||
| ACC_TYPE maxReduce(const in ACC_TYPE x, const in ACC_TYPE y) { | ||||
|     return max(x, y); | ||||
| @@ -118,67 +68,12 @@ D_TYPE perElemOpGqaStore(const in uint32_t r, const in uint32_t c, const in D_TY | ||||
|     return elem; | ||||
| } | ||||
|  | ||||
| // Store column zero. This is used to save per-row m and L values for split_k. | ||||
| ACC_TYPE perElemOpStoreCol0(const in uint32_t r, const in uint32_t c, const in ACC_TYPE elem, const in uint32_t o_offset, const in uint32_t iq2, const in uint32_t N) | ||||
| { | ||||
|     if (r < N && c == 0) { | ||||
|         uint32_t offset = iq2 + r; | ||||
|         data_o[o_offset + offset] = D_TYPE(elem); | ||||
|     } | ||||
|     return elem; | ||||
| } | ||||
|  | ||||
| // Load the slope matrix, indexed by Q's dimension 2. | ||||
| ACC_TYPE perElemOpComputeSlope(const in uint32_t r, const in uint32_t c, const in ACC_TYPE elem, const in uint32_t iq2) | ||||
| { | ||||
|     const uint32_t h = iq2 + (r % p.gqa_ratio); | ||||
|  | ||||
|     const ACC_TYPE base = ACC_TYPE(h < p.n_head_log2 ? p.m0 : p.m1); | ||||
|     const int      exph = int(h < p.n_head_log2 ? h + 1 : 2*(h - p.n_head_log2) + 1); | ||||
|  | ||||
|     return ACC_TYPE(pow(base, ACC_TYPE(exph))); | ||||
| } | ||||
|  | ||||
| void main() { | ||||
| #ifdef NEEDS_INIT_IQ_SHMEM | ||||
|     init_iq_shmem(gl_WorkGroupSize); | ||||
| #endif | ||||
|  | ||||
|     const uint32_t N = p.N; | ||||
|     const uint32_t KV = p.KV; | ||||
|  | ||||
|     uint32_t i = gl_WorkGroupID.x; | ||||
|     uint32_t split_k_index = 0; | ||||
|  | ||||
|     if (p.k_num > 1) { | ||||
|         i = 0; | ||||
|         split_k_index = gl_WorkGroupID.x; | ||||
|     } | ||||
|  | ||||
|     const uint32_t Tr = CEIL_DIV(N, Br); | ||||
|  | ||||
|     const uint32_t start_j = split_k_index * p.split_kv / Bc; | ||||
|     const uint32_t end_j = CEIL_DIV(min(KV, (split_k_index + 1) * p.split_kv), Bc); | ||||
|  | ||||
|     // When not using grouped query attention, all rows share the same iq2, equal to gl_WorkGroupID.y. | ||||
|     // When using grouped query attention, each workgroup does gqa_ratio consecutive values of iq2. | ||||
|     const uint32_t iq2 = gl_WorkGroupID.y * p.gqa_ratio; | ||||
|     const uint32_t iq3 = gl_WorkGroupID.z; | ||||
|  | ||||
|     // broadcast factors | ||||
|     const uint32_t rk2 = p.neq2/p.nek2; | ||||
|     const uint32_t rk3 = p.neq3/p.nek3; | ||||
|  | ||||
|     const uint32_t rv2 = p.neq2/p.nev2; | ||||
|     const uint32_t rv3 = p.neq3/p.nev3; | ||||
|  | ||||
|     // k indices | ||||
|     const uint32_t ik3 = iq3 / rk3; | ||||
|     const uint32_t ik2 = iq2 / rk2; | ||||
|  | ||||
|     // v indices | ||||
|     const uint32_t iv3 = iq3 / rv3; | ||||
|     const uint32_t iv2 = iq2 / rv2; | ||||
|     init_indices(); | ||||
|  | ||||
|     tensorLayoutNV<2, gl_CooperativeMatrixClampModeConstantNV> tensorLayoutQ = createTensorLayoutNV(2, gl_CooperativeMatrixClampModeConstantNV); | ||||
|     tensorLayoutNV<2, Clamp> tensorLayoutK = createTensorLayoutNV(2, Clamp); | ||||
| @@ -195,17 +90,6 @@ void main() { | ||||
|     tensorLayoutK = setTensorLayoutDimensionNV(tensorLayoutK, KV, D); | ||||
|     tensorLayoutV = setTensorLayoutDimensionNV(tensorLayoutV, KV, D); | ||||
|  | ||||
|     // nb?1 are already divided by the type size and are in units of elements. | ||||
|     // When using grouped query attention, Q is indexed by iq2, so the stride | ||||
|     // should be nb02 (which is in bytes). | ||||
|     uint32_t q_stride = p.gqa_ratio > 1 ? (p.nb02 / 4) : p.nb01; | ||||
|     uint32_t k_stride = p.nb11; | ||||
|     uint32_t v_stride = p.nb21; | ||||
|     // When using grouped query attention, all rows use the same mask (stride 0). | ||||
|     // "p.gqa_ratio >> 16" is just a roundabout way of writing zero | ||||
|     // that prevents the compiler from folding the "&" through the select | ||||
|     // and breaking the alignment detection. | ||||
|     uint32_t m_stride = (p.gqa_ratio > 1) ? (p.gqa_ratio >> 16) : KV; | ||||
|     // hint to the compiler that strides are aligned for the aligned variant of the shader | ||||
|     if (Clamp != gl_CooperativeMatrixClampModeConstantNV) | ||||
|     { | ||||
|   | ||||
		Reference in New Issue
	
	Block a user
	 Jeff Bolz
					Jeff Bolz