mirror of
				https://github.com/ggml-org/llama.cpp.git
				synced 2025-10-31 08:51:55 +00:00 
			
		
		
		
	llama : fix embeddings (#5796)
* llama : fix embeddings ggml-ci * llama : do not use KV cache for non-causal models ggml-ci * embeddings : fix llama_batch_init arg * llama : add pooling switch * llama : distinguish token vs sequence embeddings ggml-ci * llama : assert pooling tensor * llama : simplify causal mask condition ggml-ci * llama : assert input batch with pooling enabled * readme : update API changes list
This commit is contained in:
		
							
								
								
									
										34
									
								
								examples/server-embd.py
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										34
									
								
								examples/server-embd.py
									
									
									
									
									
										Normal file
									
								
							| @@ -0,0 +1,34 @@ | ||||
| import asyncio | ||||
| import requests | ||||
| import numpy as np | ||||
|  | ||||
| n = 8 | ||||
|  | ||||
| result = [] | ||||
|  | ||||
| async def requests_post_async(*args, **kwargs): | ||||
|     return await asyncio.to_thread(requests.post, *args, **kwargs) | ||||
|  | ||||
| async def main(): | ||||
|     model_url = "http://127.0.0.1:6900" | ||||
|     responses: list[requests.Response] = await asyncio.gather(*[requests_post_async( | ||||
|         url= f"{model_url}/embedding", | ||||
|         json= {"content": str(i)*1024} | ||||
|     ) for i in range(n)]) | ||||
|  | ||||
|     for response in responses: | ||||
|         embedding = response.json()["embedding"] | ||||
|         print(embedding[-8:]) | ||||
|         result.append(embedding) | ||||
|  | ||||
| asyncio.run(main()) | ||||
|  | ||||
| # compute cosine similarity | ||||
|  | ||||
| for i in range(n-1): | ||||
|     for j in range(i+1, n): | ||||
|         embedding1 = np.array(result[i]) | ||||
|         embedding2 = np.array(result[j]) | ||||
|         similarity = np.dot(embedding1, embedding2) / (np.linalg.norm(embedding1) * np.linalg.norm(embedding2)) | ||||
|         print(f"Similarity between {i} and {j}: {similarity:.2f}") | ||||
|  | ||||
		Reference in New Issue
	
	Block a user
	 Georgi Gerganov
					Georgi Gerganov