mirror of
				https://github.com/ggml-org/llama.cpp.git
				synced 2025-10-28 08:31:25 +00:00 
			
		
		
		
	ggml : faster ssm scan (#10558)
* faster ssm_scan * delete unused commnet * clang format * add space * modify unnecessary calculations * faster ssm conv implementatioin * modify file name with dash
This commit is contained in:
		| @@ -31,6 +31,8 @@ | ||||
| #include "ggml-cuda/rope.cuh" | ||||
| #include "ggml-cuda/scale.cuh" | ||||
| #include "ggml-cuda/softmax.cuh" | ||||
| #include "ggml-cuda/ssm-conv.cuh" | ||||
| #include "ggml-cuda/ssm-scan.cuh" | ||||
| #include "ggml-cuda/sum.cuh" | ||||
| #include "ggml-cuda/sumrows.cuh" | ||||
| #include "ggml-cuda/tsembd.cuh" | ||||
| @@ -2296,6 +2298,12 @@ static bool ggml_cuda_compute_forward(ggml_backend_cuda_context & ctx, struct gg | ||||
|         case GGML_OP_SUM_ROWS: | ||||
|             ggml_cuda_op_sum_rows(ctx, dst); | ||||
|             break; | ||||
|         case GGML_OP_SSM_CONV: | ||||
|             ggml_cuda_op_ssm_conv(ctx, dst); | ||||
|             break; | ||||
|         case GGML_OP_SSM_SCAN: | ||||
|             ggml_cuda_op_ssm_scan(ctx, dst); | ||||
|             break; | ||||
|         case GGML_OP_ARGSORT: | ||||
|             ggml_cuda_op_argsort(ctx, dst); | ||||
|             break; | ||||
| @@ -3193,6 +3201,8 @@ static bool ggml_backend_cuda_device_supports_op(ggml_backend_dev_t dev, const g | ||||
|         case GGML_OP_COS: | ||||
|         case GGML_OP_CLAMP: | ||||
|         case GGML_OP_LOG: | ||||
|         case GGML_OP_SSM_SCAN: | ||||
|         case GGML_OP_SSM_CONV: | ||||
|             return true; | ||||
|         case GGML_OP_CONT: | ||||
|             return op->src[0]->type != GGML_TYPE_BF16; | ||||
|   | ||||
							
								
								
									
										151
									
								
								ggml/src/ggml-cuda/ssm-conv.cu
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										151
									
								
								ggml/src/ggml-cuda/ssm-conv.cu
									
									
									
									
									
										Normal file
									
								
							| @@ -0,0 +1,151 @@ | ||||
| #include "ssm-conv.cuh" | ||||
|  | ||||
| template <size_t split_d_inner, size_t d_conv> | ||||
| static __global__ void ssm_conv_f32(const float * __restrict__ src0, const float * __restrict__ src1, | ||||
|                                     const int src0_nb0, const int src0_nb1, const int src0_nb2, const int src1_nb1, | ||||
|                                     float * __restrict__ dst, const int dst_nb0, const int dst_nb1, const int dst_nb2, | ||||
|                                     const int nc, const int ncs, const int nr, const int n_t, const int n_s) { | ||||
|     const int tid  = threadIdx.x; | ||||
|     const int bidx = blockIdx.x; | ||||
|     const int bidy = blockIdx.y; | ||||
|  | ||||
|     const float * x_block = (const float *) ((char *) src0 + bidx * src0_nb2 + bidy * split_d_inner * src0_nb1); | ||||
|     const float * w_block = (const float *) ((char *) src1 + bidy * split_d_inner * src1_nb1); | ||||
|     float *       y_block = (float *) ((char *) dst + bidx * dst_nb2 + bidy * split_d_inner * dst_nb0); | ||||
|  | ||||
|     const int stride_x = src0_nb1 / sizeof(float); | ||||
|     const int stride_w = src1_nb1 / sizeof(float); | ||||
|     const int stride_y = dst_nb1 / sizeof(float); | ||||
|  | ||||
|     float x[d_conv] = { 0.0f }; | ||||
|     float w[d_conv] = { 0.0f }; | ||||
|  | ||||
| #pragma unroll | ||||
|     for (int j = 0; j < d_conv; j++) { | ||||
|         w[j] = w_block[tid * stride_w + j]; | ||||
|     } | ||||
|  | ||||
|     for (int i = 0; i < n_t; i++) { | ||||
|         float sumf = 0.0f; | ||||
|  | ||||
|         if (i == 0) { | ||||
|             for (int j = 0; j < d_conv; j++) { | ||||
|                 x[j] = x_block[tid * stride_x + j]; | ||||
|             } | ||||
|         } else { | ||||
|             x[(i - 1) % d_conv] = x_block[tid * stride_x + i + d_conv - 1]; | ||||
|         } | ||||
|  | ||||
| #pragma unroll | ||||
|         for (int j = 0; j < d_conv; j++) { | ||||
|             sumf += x[(i + j) % d_conv] * w[j]; | ||||
|         } | ||||
|         y_block[i * stride_y + tid] = sumf; | ||||
|     } | ||||
| } | ||||
|  | ||||
| template <size_t split_d_inner, size_t d_conv, size_t split_n_t> | ||||
| static __global__ void ssm_conv_long_token_f32(const float * __restrict__ src0, const float * __restrict__ src1, | ||||
|                                                const int src0_nb0, const int src0_nb1, const int src0_nb2, | ||||
|                                                const int src1_nb1, float * __restrict__ dst, const int dst_nb0, | ||||
|                                                const int dst_nb1, const int dst_nb2, const int nc, const int ncs, | ||||
|                                                const int nr, const int n_t, const int n_s) { | ||||
|     const int tid  = threadIdx.x; | ||||
|     const int bidx = blockIdx.x; | ||||
|     const int bidy = blockIdx.y; | ||||
|     const int bidz = blockIdx.z; | ||||
|  | ||||
|     const float * x_block = (const float *) ((char *) src0 + bidx * src0_nb2 + bidy * split_d_inner * src0_nb1 + | ||||
|                                              bidz * split_n_t * src0_nb0); | ||||
|     const float * w_block = (const float *) ((char *) src1 + bidy * split_d_inner * src1_nb1); | ||||
|     float *       y_block = | ||||
|         (float *) ((char *) dst + bidx * dst_nb2 + bidz * split_n_t * dst_nb1 + bidy * split_d_inner * dst_nb0); | ||||
|  | ||||
|     const int stride_x = src0_nb1 / sizeof(float); | ||||
|     const int stride_w = src1_nb1 / sizeof(float); | ||||
|     const int stride_y = dst_nb1 / sizeof(float); | ||||
|  | ||||
|     float x[d_conv] = { 0.0f }; | ||||
|     float w[d_conv] = { 0.0f }; | ||||
|  | ||||
| #pragma unroll | ||||
|     for (int j = 0; j < d_conv; j++) { | ||||
|         w[j] = w_block[tid * stride_w + j]; | ||||
|     } | ||||
|  | ||||
| #pragma unroll | ||||
|     for (int i = 0; i < split_n_t; i++) { | ||||
|         if (bidz * split_n_t + i < n_t) { | ||||
|             float sumf = 0.0f; | ||||
|  | ||||
|             if (i == 0) { | ||||
|                 for (int j = 0; j < d_conv; j++) { | ||||
|                     x[j] = x_block[tid * stride_x + j]; | ||||
|                 } | ||||
|             } else { | ||||
|                 x[(i - 1) % d_conv] = x_block[tid * stride_x + i + d_conv - 1]; | ||||
|             } | ||||
|  | ||||
| #pragma unroll | ||||
|             for (int j = 0; j < d_conv; j++) { | ||||
|                 sumf += x[(i + j) % d_conv] * w[j]; | ||||
|             } | ||||
|             y_block[i * stride_y + tid] = sumf; | ||||
|         } | ||||
|     } | ||||
| } | ||||
|  | ||||
| static void ssm_conv_f32_cuda(const float * src0, const float * src1, const int src0_nb0, const int src0_nb1, | ||||
|                               const int src0_nb2, const int src1_nb1, float * dst, const int dst_nb0, const int dst_nb1, | ||||
|                               const int dst_nb2, const int nc, const int ncs, const int nr, const int n_t, | ||||
|                               const int n_s, cudaStream_t stream) { | ||||
|     const int threads = 128; | ||||
|     GGML_ASSERT(nr % threads == 0); | ||||
|  | ||||
|     if (n_t <= 32) { | ||||
|         const dim3 blocks(n_s, (nr + threads - 1) / threads, 1); | ||||
|         if (nc == 4) { | ||||
|             ssm_conv_f32<threads, 4><<<blocks, threads, 0, stream>>>(src0, src1, src0_nb0, src0_nb1, src0_nb2, src1_nb1, | ||||
|                                                                      dst, dst_nb0, dst_nb1, dst_nb2, nc, ncs, nr, n_t, | ||||
|                                                                      n_s); | ||||
|         } else { | ||||
|             GGML_ABORT("Only support kernel size = 4  now."); | ||||
|         } | ||||
|     } else { | ||||
|         if (nc == 4) { | ||||
|             const int split_n_t = 32; | ||||
|             dim3      blocks(n_s, (nr + threads - 1) / threads, (n_t + split_n_t - 1) / split_n_t); | ||||
|             ssm_conv_long_token_f32<threads, 4, split_n_t> | ||||
|                 <<<blocks, threads, 0, stream>>>(src0, src1, src0_nb0, src0_nb1, src0_nb2, src1_nb1, dst, dst_nb0, | ||||
|                                                  dst_nb1, dst_nb2, nc, ncs, nr, n_t, n_s); | ||||
|         } else { | ||||
|             GGML_ABORT("Only support kernel size = 4 right now."); | ||||
|         } | ||||
|     } | ||||
| } | ||||
|  | ||||
| void ggml_cuda_op_ssm_conv(ggml_backend_cuda_context & ctx, ggml_tensor * dst) { | ||||
|     const struct ggml_tensor * src0 = dst->src[0];  // conv_x | ||||
|     const struct ggml_tensor * src1 = dst->src[1];  // conv1d.weight | ||||
|  | ||||
|     const int nc  = src1->ne[0];                    // d_conv | ||||
|     const int ncs = src0->ne[0];                    // d_conv - 1 + n_t | ||||
|     const int nr  = src0->ne[1];                    // d_inner | ||||
|     const int n_t = dst->ne[1];                     // tokens per sequence | ||||
|     const int n_s = dst->ne[2];                     // number of sequences in the batch | ||||
|  | ||||
|     GGML_ASSERT(dst->ne[0] == nr); | ||||
|     GGML_ASSERT(src0->nb[0] == sizeof(float)); | ||||
|     GGML_ASSERT(src1->nb[0] == sizeof(float)); | ||||
|     GGML_ASSERT(src0->nb[1] == src0->ne[0] * sizeof(float)); | ||||
|  | ||||
|     const float * src0_d = (const float *) src0->data; | ||||
|     const float * src1_d = (const float *) src1->data; | ||||
|     float *       dst_d  = (float *) dst->data; | ||||
|     cudaStream_t  stream = ctx.stream(); | ||||
|  | ||||
|     GGML_ASSERT(src0->type == GGML_TYPE_F32); | ||||
|     GGML_ASSERT(dst->type == GGML_TYPE_F32); | ||||
|     ssm_conv_f32_cuda(src0_d, src1_d, src0->nb[0], src0->nb[1], src0->nb[2], src1->nb[1], dst_d, dst->nb[0], dst->nb[1], | ||||
|                       dst->nb[2], nc, ncs, nr, n_t, n_s, stream); | ||||
| } | ||||
							
								
								
									
										3
									
								
								ggml/src/ggml-cuda/ssm-conv.cuh
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										3
									
								
								ggml/src/ggml-cuda/ssm-conv.cuh
									
									
									
									
									
										Normal file
									
								
							| @@ -0,0 +1,3 @@ | ||||
| #include "common.cuh" | ||||
|  | ||||
| void ggml_cuda_op_ssm_conv(ggml_backend_cuda_context & ctx, ggml_tensor * dst); | ||||
							
								
								
									
										155
									
								
								ggml/src/ggml-cuda/ssm-scan.cu
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										155
									
								
								ggml/src/ggml-cuda/ssm-scan.cu
									
									
									
									
									
										Normal file
									
								
							| @@ -0,0 +1,155 @@ | ||||
| #include "ssm-scan.cuh" | ||||
|  | ||||
| // #include <cuda_runtime.h> | ||||
| // static __device__ void global_to_shared(const float *src, float *dst) { | ||||
| //   asm volatile("cp.async."); | ||||
| // } | ||||
|  | ||||
| template <size_t splitD, size_t N> | ||||
| __global__ void __launch_bounds__(splitD, 2) | ||||
|     ssm_scan_f32(const float * __restrict__ src0, const float * __restrict__ src1, const float * __restrict__ src2, | ||||
|                  const float * __restrict__ src3, const float * __restrict__ src4, const float * __restrict__ src5, | ||||
|                  const int src0_nb1, const int src0_nb2, const int src1_nb0, const int src1_nb1, const int src1_nb2, | ||||
|                  const int src1_nb3, const int src2_nb0, const int src2_nb1, const int src2_nb2, const int src3_nb1, | ||||
|                  const int src4_nb1, const int src4_nb2, const int src5_nb1, const int src5_nb2, | ||||
|                  float * __restrict__ dst, const int D, const int L, const int B) { | ||||
|     const int bidx = blockIdx.x;  // split along B | ||||
|     const int bidy = blockIdx.y;  // split along D | ||||
|     const int tid  = threadIdx.x; | ||||
|     const int wid  = tid / 32; | ||||
|     const int wtid = tid % 32; | ||||
|  | ||||
|     extern __shared__ float smem[]; | ||||
|     const int               stride_sA  = N + 1; | ||||
|     const int               stride_ss0 = N + 1; | ||||
|     float *                 smem_A     = smem; | ||||
|     float *                 smem_s0    = smem_A + splitD * stride_sA; | ||||
|  | ||||
|     const float * s0_block = (const float *) ((char *) src0 + bidx * src0_nb2 + bidy * splitD * src0_nb1); | ||||
|     const float * x_block  = (const float *) ((char *) src1 + (bidx * src1_nb2) + bidy * splitD * sizeof(float)); | ||||
|     const float * dt_block = (const float *) ((char *) src2 + (bidx * src2_nb2) + bidy * splitD * sizeof(float)); | ||||
|     const float * A_block  = (const float *) ((char *) src3 + bidy * splitD * src3_nb1); | ||||
|     const float * B_block  = (const float *) ((char *) src4 + (bidx * src4_nb2)); | ||||
|     const float * C_block  = (const float *) ((char *) src5 + (bidx * src5_nb2)); | ||||
|     float *       y_block  = (float *) ((char *) dst + (bidx * src1_nb2) + bidy * splitD * sizeof(float)); | ||||
|     float *       s_block  = (float *) ((char *) dst + src1_nb3 + bidx * src0_nb2 + bidy * splitD * src0_nb1); | ||||
|  | ||||
|     const int stride_s0 = src0_nb1 / sizeof(float); | ||||
|     const int stride_x  = src1_nb1 / sizeof(float); | ||||
|     const int stride_dt = src2_nb1 / sizeof(float); | ||||
|     const int stride_A  = src3_nb1 / sizeof(float); | ||||
|     const int stride_B  = src4_nb1 / sizeof(float); | ||||
|     const int stride_C  = src5_nb1 / sizeof(float); | ||||
|     const int stride_s  = stride_s0; | ||||
|     const int stride_y  = stride_x; | ||||
|  | ||||
|     // can N not be 16? for example 32? | ||||
|     if (N == 16) { | ||||
| #pragma unroll | ||||
|         for (int i = 0; i < splitD / 4; i += 2) { | ||||
|             float value = A_block[(wid * warpSize + i) * stride_A + wtid]; | ||||
|             // todo: bank conflict | ||||
|             // I am always confused with how to use the swizzling method to solve | ||||
|             // bank conflit. Hoping somebody can tell me. | ||||
|             smem_A[(wid * warpSize + i) * stride_sA + wtid + ((wtid / 16) > 0 ? 1 : 0)] = value; | ||||
|         } | ||||
| #pragma unroll | ||||
|         for (int i = 0; i < splitD / 4; i += 2) { | ||||
|             float value = s0_block[(wid * warpSize + i) * stride_s0 + wtid]; | ||||
|             smem_s0[(wid * warpSize + i) * stride_ss0 + wtid + ((wtid / 16) > 0 ? 1 : 0)] = value; | ||||
|         } | ||||
|     } | ||||
|  | ||||
|     __syncthreads(); | ||||
|  | ||||
|     for (int i = 0; i < L; i++) { | ||||
|         float dt_soft_plus = dt_block[i * stride_dt + tid]; | ||||
|         if (dt_soft_plus <= 20.0f) { | ||||
|             dt_soft_plus = log1pf(exp(dt_soft_plus)); | ||||
|         } | ||||
|         float x_dt = x_block[i * stride_x + tid] * dt_soft_plus; | ||||
|         float sumf = 0.0f; | ||||
| #pragma unroll | ||||
|         for (int j = 0; j < N; j++) { | ||||
|             float state = (smem_s0[tid * stride_ss0 + j] * expf(dt_soft_plus * smem_A[tid * stride_sA + j])) + | ||||
|                           (B_block[i * stride_B + j] * x_dt); | ||||
|             sumf += state * C_block[i * stride_C + j]; | ||||
|             if (i == L - 1) { | ||||
|                 s_block[tid * stride_s + j] = state; | ||||
|             } else { | ||||
|                 smem_s0[tid * stride_ss0 + j] = state; | ||||
|             } | ||||
|         } | ||||
|         __syncthreads(); | ||||
|         y_block[i * stride_y + tid] = sumf; | ||||
|     } | ||||
| } | ||||
|  | ||||
| static void ssm_scan_f32_cuda(const float * src0, const float * src1, const float * src2, const float * src3, | ||||
|                               const float * src4, const float * src5, const int src0_nb1, const int src0_nb2, | ||||
|                               const int src1_nb0, const int src1_nb1, const int src1_nb2, const int src1_nb3, | ||||
|                               const int src2_nb0, const int src2_nb1, const int src2_nb2, const int src3_nb1, | ||||
|                               const int src4_nb1, const int src4_nb2, const int src5_nb1, const int src5_nb2, | ||||
|                               float * dst, const int N, const int D, const int L, const int B, cudaStream_t stream) { | ||||
|     const int threads = 128; | ||||
|     // todo: consider D cannot be divided,does this situation exist? | ||||
|     GGML_ASSERT(D % threads == 0); | ||||
|     const dim3 blocks(B, (D + threads - 1) / threads, 1); | ||||
|     const int  smem_size = (threads * (N + 1) * 2) * sizeof(float); | ||||
|     if (N == 16) { | ||||
|         ssm_scan_f32<128, 16><<<blocks, threads, smem_size, stream>>>( | ||||
|             src0, src1, src2, src3, src4, src5, src0_nb1, src0_nb2, src1_nb0, src1_nb1, src1_nb2, src1_nb3, src2_nb0, | ||||
|             src2_nb1, src2_nb2, src3_nb1, src4_nb1, src4_nb2, src5_nb1, src5_nb2, dst, D, L, B); | ||||
|     } else { | ||||
|         GGML_ABORT("doesn't support N!=16."); | ||||
|     } | ||||
| } | ||||
|  | ||||
| void ggml_cuda_op_ssm_scan(ggml_backend_cuda_context & ctx, ggml_tensor * dst) { | ||||
|     const struct ggml_tensor * src0 = dst->src[0];  // s | ||||
|     const struct ggml_tensor * src1 = dst->src[1];  // x | ||||
|     const struct ggml_tensor * src2 = dst->src[2];  // dt | ||||
|     const struct ggml_tensor * src3 = dst->src[3];  // A | ||||
|     const struct ggml_tensor * src4 = dst->src[4];  // B | ||||
|     const struct ggml_tensor * src5 = dst->src[5];  // C | ||||
|  | ||||
|     //   const int64_t d_state = src0->ne[0]; | ||||
|     //   const int64_t d_inner = src0->ne[1]; | ||||
|     //   const int64_t l = src1->ne[1]; | ||||
|     //   const int64_t b = src0->ne[2]; | ||||
|  | ||||
|     const int64_t nc  = src0->ne[0];  // d_state | ||||
|     const int64_t nr  = src0->ne[1];  // d_inner | ||||
|     const int64_t n_t = src1->ne[1];  // number of tokens per sequence | ||||
|     const int64_t n_s = src0->ne[2];  // number of sequences in the batch | ||||
|  | ||||
|     GGML_ASSERT(ggml_nelements(src1) + ggml_nelements(src0) == ggml_nelements(dst)); | ||||
|     GGML_ASSERT(src0->nb[0] == sizeof(float)); | ||||
|     GGML_ASSERT(src1->nb[0] == sizeof(float)); | ||||
|     GGML_ASSERT(src2->nb[0] == sizeof(float)); | ||||
|     GGML_ASSERT(src3->nb[0] == sizeof(float)); | ||||
|     GGML_ASSERT(src4->nb[0] == sizeof(float)); | ||||
|     GGML_ASSERT(src5->nb[0] == sizeof(float)); | ||||
|     // required for the dot product between s and C | ||||
|     GGML_ASSERT(src0->nb[1] == src0->ne[0] * sizeof(float)); | ||||
|     // required for per-sequence offsets for states | ||||
|     GGML_ASSERT(src0->nb[2] == src0->ne[0] * src0->ne[1] * sizeof(float)); | ||||
|     // required to get correct offset for state destination (i.e. src1->nb[3]) | ||||
|     GGML_ASSERT(src1->nb[3] == src1->ne[0] * src1->ne[1] * src1->ne[2] * sizeof(float)); | ||||
|  | ||||
|     const float * src0_d = (const float *) src0->data; | ||||
|     const float * src1_d = (const float *) src1->data; | ||||
|     const float * src2_d = (const float *) src2->data; | ||||
|     const float * src3_d = (const float *) src3->data; | ||||
|     const float * src4_d = (const float *) src4->data; | ||||
|     const float * src5_d = (const float *) src5->data; | ||||
|     float *       dst_d  = (float *) dst->data; | ||||
|     cudaStream_t  stream = ctx.stream(); | ||||
|  | ||||
|     GGML_ASSERT(src0->type == GGML_TYPE_F32); | ||||
|     GGML_ASSERT(dst->type == GGML_TYPE_F32); | ||||
|  | ||||
|     ssm_scan_f32_cuda(src0_d, src1_d, src2_d, src3_d, src4_d, src5_d, src0->nb[1], src0->nb[2], src1->nb[0], | ||||
|                       src1->nb[1], src1->nb[2], src1->nb[3], src2->nb[0], src2->nb[1], src2->nb[2], src3->nb[1], | ||||
|                       src4->nb[1], src4->nb[2], src5->nb[1], src5->nb[2], dst_d, nc, nr, n_t, n_s, stream); | ||||
| } | ||||
							
								
								
									
										3
									
								
								ggml/src/ggml-cuda/ssm-scan.cuh
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										3
									
								
								ggml/src/ggml-cuda/ssm-scan.cuh
									
									
									
									
									
										Normal file
									
								
							| @@ -0,0 +1,3 @@ | ||||
| #include "common.cuh" | ||||
|  | ||||
| void ggml_cuda_op_ssm_scan(ggml_backend_cuda_context & ctx, ggml_tensor * dst); | ||||
		Reference in New Issue
	
	Block a user
	 a3sh
					a3sh