mirror of
				https://github.com/ggml-org/llama.cpp.git
				synced 2025-10-31 08:51:55 +00:00 
			
		
		
		
	fix conflicts
This commit is contained in:
		| @@ -23,7 +23,6 @@ def permute(weights: NDArray, n_head: int) -> NDArray: | |||||||
|                    .swapaxes(1, 2) |                    .swapaxes(1, 2) | ||||||
|                    .reshape(weights.shape)) |                    .reshape(weights.shape)) | ||||||
|  |  | ||||||
|  |  | ||||||
| def count_model_parts(dir_model: str) -> int: | def count_model_parts(dir_model: str) -> int: | ||||||
|     num_parts = 0 |     num_parts = 0 | ||||||
|     for filename in os.listdir(dir_model): |     for filename in os.listdir(dir_model): | ||||||
| @@ -34,7 +33,6 @@ def count_model_parts(dir_model: str) -> int: | |||||||
|         print("gguf: found " + str(num_parts) + " model parts") |         print("gguf: found " + str(num_parts) + " model parts") | ||||||
|     return num_parts |     return num_parts | ||||||
|  |  | ||||||
|  |  | ||||||
| if len(sys.argv) < 3: | if len(sys.argv) < 3: | ||||||
|     print("Usage: convert-h5-to-ggml.py dir-model ftype\n") |     print("Usage: convert-h5-to-ggml.py dir-model ftype\n") | ||||||
|     print("  ftype == 0 -> float32") |     print("  ftype == 0 -> float32") | ||||||
| @@ -188,7 +186,7 @@ else: | |||||||
|     ) |     ) | ||||||
|  |  | ||||||
| for part_name in part_names: | for part_name in part_names: | ||||||
|     print("gguf: loading model part '" + part_name + "'") |     print("gguf: loading model part '"+ part_name + "'") | ||||||
|     model_part = torch.load(f"{dir_model}/{part_name}", map_location="cpu") |     model_part = torch.load(f"{dir_model}/{part_name}", map_location="cpu") | ||||||
|  |  | ||||||
|     for name in model_part.keys(): |     for name in model_part.keys(): | ||||||
| @@ -206,7 +204,7 @@ for part_name in part_names: | |||||||
|  |  | ||||||
|         # permute these |         # permute these | ||||||
|         if name.endswith(".q_proj.weight") or name.endswith(".k_proj.weight"): |         if name.endswith(".q_proj.weight") or name.endswith(".k_proj.weight"): | ||||||
|             data = permute(data, head_count) |             data = permute(data,head_count) | ||||||
|  |  | ||||||
|         # map tensor names |         # map tensor names | ||||||
|         if name.endswith(".weight") and name[:-7] in tensor_map: |         if name.endswith(".weight") and name[:-7] in tensor_map: | ||||||
| @@ -214,7 +212,7 @@ for part_name in part_names: | |||||||
|         elif name.endswith(".bias") and name[:-5] in tensor_map: |         elif name.endswith(".bias") and name[:-5] in tensor_map: | ||||||
|             name = tensor_map[name[:-5]] + ".bias" |             name = tensor_map[name[:-5]] + ".bias" | ||||||
|         else: |         else: | ||||||
|             print("Can not map tensor '" + name + "'") |             print( "Can not map tensor '" + name + "'" ) | ||||||
|             sys.exit() |             sys.exit() | ||||||
|  |  | ||||||
|         n_dims = len(data.shape) |         n_dims = len(data.shape) | ||||||
| @@ -255,60 +253,56 @@ else: | |||||||
|     ) |     ) | ||||||
|  |  | ||||||
| for part_name in part_names: | for part_name in part_names: | ||||||
|     print("gguf: loading model part '" + part_name + "'") |     print("gguf: loading model part '"+ part_name + "'") | ||||||
|     model_part = torch.load(f"{dir_model}/{part_name}", map_location="cpu") |     model_part = torch.load(f"{dir_model}/{part_name}", map_location="cpu") | ||||||
|  |  | ||||||
|     for name in model_part.keys(): |     for name in model_part.keys(): | ||||||
|         data = model_part[name] |         data = model_part[name] | ||||||
|  |  | ||||||
| << << << < HEAD |  | ||||||
|    n_dims = len(data.shape) |  | ||||||
|     data_dtype = data.dtype |  | ||||||
| == == == = |  | ||||||
|    old_dtype = data.dtype |  | ||||||
|      |      | ||||||
|     # we don't need these |         old_dtype = data.dtype | ||||||
|     if name.endswith(".rotary_emb.inv_freq"): |  | ||||||
|         continue |  | ||||||
| >>>>>> > 17800cd80fec468411481dc34a51d42a936442f1 |  | ||||||
|  |  | ||||||
|    # convert any unsupported data types to float32 |         # we don't need these | ||||||
|    if data.dtype != torch.float16 and data.dtype != torch.float32: |         if name.endswith(".rotary_emb.inv_freq"): | ||||||
|         data = data.to(torch.float32) |             continue | ||||||
|  |  | ||||||
|     data = data.squeeze().numpy() |         # convert any unsupported data types to float32 | ||||||
|  |         if data.dtype != torch.float16 and data.dtype != torch.float32: | ||||||
|  |             data = data.to(torch.float32) | ||||||
|  |  | ||||||
|     # permute these |         data = data.squeeze().numpy() | ||||||
|     if name.endswith(".q_proj.weight") or name.endswith(".k_proj.weight"): |  | ||||||
|         data = permute(data, head_count) |  | ||||||
|  |  | ||||||
|     # map tensor names |         # permute these | ||||||
|     if name.endswith(".weight") and name[:-7] in tensor_map: |         if name.endswith(".q_proj.weight") or name.endswith(".k_proj.weight"): | ||||||
|         name = tensor_map[name[:-7]] + ".weight" |             data = permute(data, head_count) | ||||||
|     elif name.endswith(".bias") and name[:-5] in tensor_map: |  | ||||||
|         name = tensor_map[name[:-5]] + ".bias" |  | ||||||
|     else: |  | ||||||
|         print("Can not map tensor '" + name + "'" ) |  | ||||||
|         sys.exit() |  | ||||||
|  |  | ||||||
|     n_dims = len(data.shape) |         # map tensor names | ||||||
|     data_dtype = data.dtype |         if name.endswith(".weight") and name[:-7] in tensor_map: | ||||||
|  |             name = tensor_map[name[:-7]] + ".weight" | ||||||
|  |         elif name.endswith(".bias") and name[:-5] in tensor_map: | ||||||
|  |             name = tensor_map[name[:-5]] + ".bias" | ||||||
|  |         else: | ||||||
|  |             print( "Can not map tensor '" + name + "'" ) | ||||||
|  |             sys.exit() | ||||||
|  |  | ||||||
|     # if f32 desired, convert any float16 to float32 |         n_dims = len(data.shape) | ||||||
|     if ftype == 0 and data.dtype == np.float16: |         data_dtype = data.dtype  | ||||||
|         data = data.astype(np.float32) |  | ||||||
|  |  | ||||||
|     # TODO: Why cant we use these float16 as-is? There should be not reason to store float16 as float32 |         # if f32 desired, convert any float16 to float32 | ||||||
|     if ftype == 1 and data_dtype == np.float16 and n_dims == 1: |         if ftype == 0 and data.dtype == np.float16: | ||||||
|         data = data.astype(np.float32) |             data = data.astype(np.float32) | ||||||
|  |  | ||||||
|     # if f16 desired, convert any float32 2-dim weight tensors to float16 |         # TODO: Why cant we use these float16 as-is? There should be not reason to store float16 as float32 | ||||||
|     if ftype == 1 and data_dtype == np.float32 and name.endswith(".weight") and n_dims == 2: |         if ftype == 1 and data_dtype == np.float16 and n_dims == 1: | ||||||
|         data = data.astype(np.float16) |             data = data.astype(np.float32) | ||||||
|  |  | ||||||
|     print(name + ", shape " + str(len(data.shape)) + ", " + str(old_dtype) + " --> " + str(data.dtype)) |         # if f16 desired, convert any float32 2-dim weight tensors to float16 | ||||||
|  |         if ftype == 1 and data_dtype == np.float32 and name.endswith(".weight") and n_dims == 2: | ||||||
|  |             data = data.astype(np.float16) | ||||||
|  |  | ||||||
|     gguf_writer.write_tensor_to_file(data) |         print( name + ", shape " + str(len(data.shape)) + ", " + str(old_dtype) + " --> " + str(data.dtype)) | ||||||
|  |  | ||||||
|  |         gguf_writer.write_tensor_to_file(data) | ||||||
|  |  | ||||||
| gguf_writer.close() | gguf_writer.close() | ||||||
|  |  | ||||||
|   | |||||||
		Reference in New Issue
	
	Block a user
	 M. Yusuf Sarıgöz
					M. Yusuf Sarıgöz