mirror of
				https://github.com/ggml-org/llama.cpp.git
				synced 2025-11-03 09:22:01 +00:00 
			
		
		
		
	examples : add batched.swift + improve CI for swift (#3562)
This commit is contained in:
		
							
								
								
									
										9
									
								
								examples/batched.swift/.gitignore
									
									
									
									
										vendored
									
									
										Normal file
									
								
							
							
						
						
									
										9
									
								
								examples/batched.swift/.gitignore
									
									
									
									
										vendored
									
									
										Normal file
									
								
							@@ -0,0 +1,9 @@
 | 
			
		||||
.DS_Store
 | 
			
		||||
/.build
 | 
			
		||||
/Packages
 | 
			
		||||
xcuserdata/
 | 
			
		||||
DerivedData/
 | 
			
		||||
.swiftpm/configuration/registries.json
 | 
			
		||||
.swiftpm/xcode/package.xcworkspace/contents.xcworkspacedata
 | 
			
		||||
.netrc
 | 
			
		||||
batched_swift
 | 
			
		||||
							
								
								
									
										6
									
								
								examples/batched.swift/Makefile
									
									
									
									
									
										Executable file
									
								
							
							
						
						
									
										6
									
								
								examples/batched.swift/Makefile
									
									
									
									
									
										Executable file
									
								
							@@ -0,0 +1,6 @@
 | 
			
		||||
.PHONY: build
 | 
			
		||||
 | 
			
		||||
build:
 | 
			
		||||
	xcodebuild -scheme batched_swift -destination "generic/platform=macOS" -derivedDataPath build
 | 
			
		||||
	rm -f ./batched_swift
 | 
			
		||||
	ln -s ./build/Build/Products/Debug/batched_swift ./batched_swift
 | 
			
		||||
							
								
								
									
										22
									
								
								examples/batched.swift/Package.swift
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										22
									
								
								examples/batched.swift/Package.swift
									
									
									
									
									
										Normal file
									
								
							@@ -0,0 +1,22 @@
 | 
			
		||||
// swift-tools-version: 5.5
 | 
			
		||||
// The swift-tools-version declares the minimum version of Swift required to build this package.
 | 
			
		||||
 | 
			
		||||
import PackageDescription
 | 
			
		||||
 | 
			
		||||
let package = Package(
 | 
			
		||||
    name: "batched_swift",
 | 
			
		||||
    platforms: [.macOS(.v12)],
 | 
			
		||||
    dependencies: [
 | 
			
		||||
        .package(name: "llama", path: "../../"),
 | 
			
		||||
    ],
 | 
			
		||||
    targets: [
 | 
			
		||||
        // Targets are the basic building blocks of a package, defining a module or a test suite.
 | 
			
		||||
        // Targets can depend on other targets in this package and products from dependencies.
 | 
			
		||||
        .executableTarget(
 | 
			
		||||
            name: "batched_swift",
 | 
			
		||||
            dependencies: ["llama"],
 | 
			
		||||
            path: "Sources",
 | 
			
		||||
            linkerSettings: [.linkedFramework("Foundation"), .linkedFramework("AppKit")]
 | 
			
		||||
        ),
 | 
			
		||||
    ]
 | 
			
		||||
)
 | 
			
		||||
							
								
								
									
										4
									
								
								examples/batched.swift/README.md
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										4
									
								
								examples/batched.swift/README.md
									
									
									
									
									
										Normal file
									
								
							@@ -0,0 +1,4 @@
 | 
			
		||||
This is a swift clone of `examples/batched`.
 | 
			
		||||
 | 
			
		||||
$ `make`
 | 
			
		||||
$ `./swift MODEL_PATH [PROMPT] [PARALLEL]`
 | 
			
		||||
							
								
								
									
										255
									
								
								examples/batched.swift/Sources/main.swift
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										255
									
								
								examples/batched.swift/Sources/main.swift
									
									
									
									
									
										Normal file
									
								
							@@ -0,0 +1,255 @@
 | 
			
		||||
import Foundation
 | 
			
		||||
import llama
 | 
			
		||||
 | 
			
		||||
let arguments = CommandLine.arguments
 | 
			
		||||
 | 
			
		||||
// Check that we have at least one argument (the model path)
 | 
			
		||||
guard arguments.count > 1 else {
 | 
			
		||||
    print("Usage: swift MODEL_PATH [PROMPT] [PARALLEL]")
 | 
			
		||||
    exit(1)
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
let modelPath: String = arguments[1]
 | 
			
		||||
let prompt: String = arguments.count > 2 ? arguments[2] : "Hello my name is"
 | 
			
		||||
let n_parallel: Int = arguments.count > 3 && Int(arguments[3]) != nil ? Int(arguments[3])! : 1
 | 
			
		||||
 | 
			
		||||
// total length of the sequences including the prompt
 | 
			
		||||
let n_len: Int = 32
 | 
			
		||||
 | 
			
		||||
// init LLM
 | 
			
		||||
llama_backend_init(false)
 | 
			
		||||
defer {
 | 
			
		||||
    llama_backend_free()
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
let model_params = llama_model_default_params()
 | 
			
		||||
guard let model = llama_load_model_from_file(modelPath.cString(using: .utf8), model_params) else {
 | 
			
		||||
    print("Failed to load model")
 | 
			
		||||
    exit(1)
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
defer {
 | 
			
		||||
    llama_free_model(model)
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
var tokens = tokenize(text: prompt, add_bos: true)
 | 
			
		||||
 | 
			
		||||
let n_kv_req = UInt32(tokens.count) + UInt32((n_len - Int(tokens.count)) * n_parallel)
 | 
			
		||||
 | 
			
		||||
var context_params = llama_context_default_params()
 | 
			
		||||
context_params.seed = 1234
 | 
			
		||||
context_params.n_ctx = n_kv_req
 | 
			
		||||
context_params.n_batch = UInt32(max(n_len, n_parallel))
 | 
			
		||||
context_params.n_threads = 8
 | 
			
		||||
context_params.n_threads_batch = 8
 | 
			
		||||
 | 
			
		||||
let context = llama_new_context_with_model(model, context_params)
 | 
			
		||||
guard context != nil else {
 | 
			
		||||
    print("Failed to initialize context")
 | 
			
		||||
    exit(1)
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
defer {
 | 
			
		||||
    llama_free(context)
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
let n_ctx = llama_n_ctx(context)
 | 
			
		||||
 | 
			
		||||
print("\nn_len = \(n_len), n_ctx = \(n_ctx), n_batch = \(context_params.n_batch), n_parallel = \(n_parallel), n_kv_req = \(n_kv_req)\n")
 | 
			
		||||
 | 
			
		||||
if n_kv_req > n_ctx {
 | 
			
		||||
    print("error: n_kv_req (%d) > n_ctx, the required KV cache size is not big enough\n", n_kv_req)
 | 
			
		||||
    exit(1)
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
var buffer: [CChar] = []
 | 
			
		||||
for id: llama_token in tokens {
 | 
			
		||||
    print(token_to_piece(token: id, buffer: &buffer) ?? "", terminator: "")
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
print("\n")
 | 
			
		||||
 | 
			
		||||
var batch = llama_batch_init(max(Int32(tokens.count), Int32(n_parallel)), 0)
 | 
			
		||||
defer {
 | 
			
		||||
    llama_batch_free(batch)
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
// evaluate the initial prompt
 | 
			
		||||
batch.n_tokens = Int32(tokens.count)
 | 
			
		||||
 | 
			
		||||
for (i, token) in tokens.enumerated() {
 | 
			
		||||
    batch.token[i] = token
 | 
			
		||||
    batch.pos[i] = Int32(i)
 | 
			
		||||
    batch.seq_id[i] = 0
 | 
			
		||||
    batch.logits[i] = 0
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
// llama_decode will output logits only for the last token of the prompt
 | 
			
		||||
batch.logits[Int(batch.n_tokens) - 1] = 1
 | 
			
		||||
 | 
			
		||||
if llama_decode(context, batch) != 0 {
 | 
			
		||||
    print("llama_decode() failed")
 | 
			
		||||
    exit(1)
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
for i in 1 ..< n_parallel {
 | 
			
		||||
    llama_kv_cache_seq_cp(context, 0, Int32(i), 0, batch.n_tokens)
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
if n_parallel > 1 {
 | 
			
		||||
    print("generating \(n_parallel) sequences ...\n")
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
var streams: [String] = .init(repeating: "", count: n_parallel)
 | 
			
		||||
var streamBuffers: [[CChar]] = .init(repeating: [], count: n_parallel)
 | 
			
		||||
var i_batch = [Int32](repeating: batch.n_tokens - 1, count: n_parallel)
 | 
			
		||||
 | 
			
		||||
var n_cur = batch.n_tokens
 | 
			
		||||
var n_decode = 0
 | 
			
		||||
 | 
			
		||||
let t_main_start = ggml_time_us()
 | 
			
		||||
 | 
			
		||||
while n_cur <= n_len {
 | 
			
		||||
    // prepare the next batch
 | 
			
		||||
    batch.n_tokens = 0
 | 
			
		||||
 | 
			
		||||
    // sample the next token for each parallel sequence / stream
 | 
			
		||||
    for i in 0 ..< n_parallel {
 | 
			
		||||
        if i_batch[i] < 0 {
 | 
			
		||||
            // the stream has already finished
 | 
			
		||||
            continue
 | 
			
		||||
        }
 | 
			
		||||
 | 
			
		||||
        var n_vocab = llama_n_vocab(model)
 | 
			
		||||
        var logits = llama_get_logits_ith(context, i_batch[i])
 | 
			
		||||
 | 
			
		||||
        var candidates: [llama_token_data] = .init(repeating: llama_token_data(), count: Int(n_vocab))
 | 
			
		||||
 | 
			
		||||
        for token_id in 0 ..< n_vocab {
 | 
			
		||||
            candidates.append(llama_token_data(id: token_id, logit: logits![Int(token_id)], p: 0.0))
 | 
			
		||||
        }
 | 
			
		||||
 | 
			
		||||
        var candidates_p: llama_token_data_array = .init(
 | 
			
		||||
            data: &candidates,
 | 
			
		||||
            size: candidates.count,
 | 
			
		||||
            sorted: false
 | 
			
		||||
        )
 | 
			
		||||
 | 
			
		||||
        let top_k: Int32 = 40
 | 
			
		||||
        let top_p: Float = 0.9
 | 
			
		||||
        let temp: Float = 0.4
 | 
			
		||||
 | 
			
		||||
        llama_sample_top_k(context, &candidates_p, top_k, 1)
 | 
			
		||||
        llama_sample_top_p(context, &candidates_p, top_p, 1)
 | 
			
		||||
        llama_sample_temp(context, &candidates_p, temp)
 | 
			
		||||
 | 
			
		||||
        let new_token_id = llama_sample_token(context, &candidates_p)
 | 
			
		||||
 | 
			
		||||
        // const llama_token new_token_id = llama_sample_token_greedy(ctx, &candidates_p);
 | 
			
		||||
 | 
			
		||||
        // is it an end of stream? -> mark the stream as finished
 | 
			
		||||
        if new_token_id == llama_token_eos(context) || n_cur == n_len {
 | 
			
		||||
            i_batch[i] = -1
 | 
			
		||||
            // print("")
 | 
			
		||||
            if n_parallel > 1 {
 | 
			
		||||
                print("stream \(i) finished at n_cur = \(n_cur)")
 | 
			
		||||
            }
 | 
			
		||||
 | 
			
		||||
            continue
 | 
			
		||||
        }
 | 
			
		||||
 | 
			
		||||
        let nextStringPiece = token_to_piece(token: new_token_id, buffer: &streamBuffers[i]) ?? ""
 | 
			
		||||
 | 
			
		||||
        // if there is only one stream, we print immediately to stdout
 | 
			
		||||
        if n_parallel == 1 {
 | 
			
		||||
            print(nextStringPiece, terminator: "")
 | 
			
		||||
        }
 | 
			
		||||
        streams[i] += nextStringPiece
 | 
			
		||||
 | 
			
		||||
        // push this new token for next evaluation
 | 
			
		||||
        batch.token[Int(batch.n_tokens)] = new_token_id
 | 
			
		||||
        batch.pos[Int(batch.n_tokens)] = n_cur
 | 
			
		||||
        batch.seq_id[Int(batch.n_tokens)] = Int32(i)
 | 
			
		||||
        batch.logits[Int(batch.n_tokens)] = 1
 | 
			
		||||
 | 
			
		||||
        i_batch[i] = batch.n_tokens
 | 
			
		||||
 | 
			
		||||
        batch.n_tokens += 1
 | 
			
		||||
 | 
			
		||||
        n_decode += 1
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
    // all streams are finished
 | 
			
		||||
    if batch.n_tokens == 0 {
 | 
			
		||||
        break
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
    n_cur += 1
 | 
			
		||||
 | 
			
		||||
    // evaluate the current batch with the transformer model
 | 
			
		||||
    if llama_decode(context, batch) != 0 {
 | 
			
		||||
        print("llama_decode() failed")
 | 
			
		||||
        exit(1)
 | 
			
		||||
    }
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
if n_parallel > 1 {
 | 
			
		||||
    print("\n")
 | 
			
		||||
    for (i, stream) in streams.enumerated() {
 | 
			
		||||
        print("sequence \(i):\n\n\(prompt)\(stream)\n")
 | 
			
		||||
    }
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
let t_main_end = ggml_time_us()
 | 
			
		||||
 | 
			
		||||
print("decoded \(n_decode) tokens in \(String(format: "%.2f", Double(t_main_end - t_main_start) / 1_000_000.0)) s, speed: \(String(format: "%.2f", Double(n_decode) / (Double(t_main_end - t_main_start) / 1_000_000.0))) t/s\n")
 | 
			
		||||
 | 
			
		||||
llama_print_timings(context)
 | 
			
		||||
 | 
			
		||||
private func tokenize(text: String, add_bos: Bool) -> [llama_token] {
 | 
			
		||||
    let n_tokens = text.count + (add_bos ? 1 : 0)
 | 
			
		||||
    let tokens = UnsafeMutablePointer<llama_token>.allocate(capacity: n_tokens)
 | 
			
		||||
    let tokenCount = llama_tokenize(model, text, Int32(text.count), tokens, Int32(n_tokens), add_bos)
 | 
			
		||||
    var swiftTokens: [llama_token] = []
 | 
			
		||||
    for i in 0 ..< tokenCount {
 | 
			
		||||
        swiftTokens.append(tokens[Int(i)])
 | 
			
		||||
    }
 | 
			
		||||
    tokens.deallocate()
 | 
			
		||||
    return swiftTokens
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
private func token_to_piece(token: llama_token, buffer: inout [CChar]) -> String? {
 | 
			
		||||
    var result = [CChar](repeating: 0, count: 8)
 | 
			
		||||
    let nTokens = llama_token_to_piece(model, token, &result, Int32(result.count))
 | 
			
		||||
    if nTokens < 0 {
 | 
			
		||||
        if result.count >= -Int(nTokens) {
 | 
			
		||||
            result.removeLast(-Int(nTokens))
 | 
			
		||||
        } else {
 | 
			
		||||
            result.removeAll()
 | 
			
		||||
        }
 | 
			
		||||
        let check = llama_token_to_piece(
 | 
			
		||||
            model,
 | 
			
		||||
            token,
 | 
			
		||||
            &result,
 | 
			
		||||
            Int32(result.count)
 | 
			
		||||
        )
 | 
			
		||||
        assert(check == nTokens)
 | 
			
		||||
    } else {
 | 
			
		||||
        result.removeLast(result.count - Int(nTokens))
 | 
			
		||||
    }
 | 
			
		||||
    if buffer.isEmpty, let utfString = String(cString: result + [0], encoding: .utf8) {
 | 
			
		||||
        return utfString
 | 
			
		||||
    } else {
 | 
			
		||||
        buffer.append(contentsOf: result)
 | 
			
		||||
        let data = Data(buffer.map { UInt8(bitPattern: $0) })
 | 
			
		||||
        if buffer.count >= 4 { // 4 bytes is the max length of a utf8 character so if we're here we need to reset the buffer
 | 
			
		||||
            buffer = []
 | 
			
		||||
        }
 | 
			
		||||
        guard let bufferString = String(data: data, encoding: .utf8) else {
 | 
			
		||||
            return nil
 | 
			
		||||
        }
 | 
			
		||||
        buffer = []
 | 
			
		||||
        return bufferString
 | 
			
		||||
    }
 | 
			
		||||
    return nil
 | 
			
		||||
}
 | 
			
		||||
		Reference in New Issue
	
	Block a user