mirror of
https://github.com/ggml-org/llama.cpp.git
synced 2025-11-20 12:07:33 +00:00
CANN: Use smart pointers to manage ACL objects (#17238)
* CANN: Use smart pointers to manage ACL objects Previously, ACL objects were managed via manual destruction, which led to multiple memory-leak issues during runtime. This patch replaces manual memory management with smart pointers so that ACL objects are properly released and ownership is clearly defined. Note that the ownership of an ACL object belongs to the function that creates it. Other internal functions should operate on these ACL objects using raw pointers to avoid unintended ownership transfers. Additionally, since aclTensorList automatically frees its contained aclTensor objects, any aclTensor added to a tensor list must release ownership to avoid double free operations. This PR also removes the asynchronous task submission mechanism. Due to changes in recent CANN versions, tiling time has significantly decreased. Even with a dual-thread submission model, the dispatch overhead still falls on the critical path, making async submission less beneficial. Moreover, aclGraph support provides a much better path to reducing operator dispatch latency. * CANN: resolve review comments
This commit is contained in:
File diff suppressed because it is too large
Load Diff
@@ -48,15 +48,14 @@ aclDataType ggml_cann_type_mapping(ggml_type type) {
|
||||
default:
|
||||
return ACL_DT_UNDEFINED;
|
||||
}
|
||||
return ACL_DT_UNDEFINED;
|
||||
}
|
||||
|
||||
aclTensor * ggml_cann_create_tensor(const ggml_tensor * tensor,
|
||||
int64_t * ne,
|
||||
size_t * nb,
|
||||
int64_t dims,
|
||||
aclFormat format,
|
||||
size_t offset) {
|
||||
acl_tensor_ptr ggml_cann_create_tensor(const ggml_tensor * tensor,
|
||||
int64_t * ne,
|
||||
size_t * nb,
|
||||
int64_t dims,
|
||||
aclFormat format,
|
||||
size_t offset) {
|
||||
// If tensor is bcasted, Up to GGML_MAX_DIMS additional dimensions will be
|
||||
// added.
|
||||
int64_t acl_ne[GGML_MAX_DIMS * 2], acl_stride[GGML_MAX_DIMS * 2];
|
||||
@@ -87,10 +86,20 @@ aclTensor * ggml_cann_create_tensor(const ggml_tensor * tensor,
|
||||
std::reverse(acl_ne, acl_ne + final_dims);
|
||||
std::reverse(acl_stride, acl_stride + final_dims);
|
||||
|
||||
aclTensor * acl_tensor = aclCreateTensor(acl_ne, final_dims, ggml_cann_type_mapping(tensor->type), acl_stride,
|
||||
elem_offset, format, &acl_storage_len, 1, tensor->data);
|
||||
aclTensor * raw = aclCreateTensor(acl_ne, final_dims, ggml_cann_type_mapping(tensor->type), acl_stride, elem_offset,
|
||||
format, &acl_storage_len, 1, tensor->data);
|
||||
|
||||
return acl_tensor;
|
||||
return acl_tensor_ptr(raw);
|
||||
}
|
||||
|
||||
acl_int_array_ptr ggml_cann_create_int_array(const int64_t * value, uint64_t size) {
|
||||
aclIntArray * raw = aclCreateIntArray(value, size);
|
||||
return acl_int_array_ptr(raw);
|
||||
}
|
||||
|
||||
acl_scalar_ptr ggml_cann_create_scalar(void * value, aclDataType dataType) {
|
||||
aclScalar * raw = aclCreateScalar(value, dataType);
|
||||
return acl_scalar_ptr(raw);
|
||||
}
|
||||
|
||||
bool ggml_cann_need_bcast(const ggml_tensor * t0, const ggml_tensor * t1) {
|
||||
|
||||
@@ -23,11 +23,12 @@
|
||||
#ifndef CANN_ACL_TENSOR_H
|
||||
#define CANN_ACL_TENSOR_H
|
||||
|
||||
#include <algorithm>
|
||||
#include <cstring>
|
||||
#include "common.h"
|
||||
|
||||
#include <aclnn/aclnn_base.h>
|
||||
#include "common.h"
|
||||
|
||||
#include <algorithm>
|
||||
#include <cstring>
|
||||
|
||||
/**
|
||||
* @brief Maps a ggml_type to its corresponding aclDataType.
|
||||
@@ -43,6 +44,20 @@
|
||||
*/
|
||||
aclDataType ggml_cann_type_mapping(ggml_type type);
|
||||
|
||||
// Deleter for acl objects.
|
||||
template <typename T, aclError (*DestroyFunc)(const T *)> struct acl_deleter {
|
||||
void operator()(T * ptr) const noexcept {
|
||||
if (ptr) {
|
||||
ACL_CHECK(DestroyFunc(ptr));
|
||||
}
|
||||
}
|
||||
};
|
||||
|
||||
using acl_tensor_ptr = std::unique_ptr<aclTensor, acl_deleter<aclTensor, aclDestroyTensor>>;
|
||||
using acl_int_array_ptr = std::unique_ptr<aclIntArray, acl_deleter<aclIntArray, aclDestroyIntArray>>;
|
||||
using acl_scalar_ptr = std::unique_ptr<aclScalar, acl_deleter<aclScalar, aclDestroyScalar>>;
|
||||
using acl_tensor_list_ptr = std::unique_ptr<aclTensorList, acl_deleter<aclTensorList, aclDestroyTensorList>>;
|
||||
|
||||
/**
|
||||
* @brief Creates an ACL tensor from a ggml_tensor with optional shape.
|
||||
*
|
||||
@@ -62,12 +77,12 @@ aclDataType ggml_cann_type_mapping(ggml_type type);
|
||||
* @param offset Offset in bytes for the ACL tensor data. Defaults to 0.
|
||||
* @return Pointer to the created ACL tensor.
|
||||
*/
|
||||
aclTensor * ggml_cann_create_tensor(const ggml_tensor * tensor,
|
||||
int64_t * ne = nullptr,
|
||||
size_t * nb = nullptr,
|
||||
int64_t dims = 0,
|
||||
aclFormat format = ACL_FORMAT_ND,
|
||||
size_t offset = 0);
|
||||
acl_tensor_ptr ggml_cann_create_tensor(const ggml_tensor * tensor,
|
||||
int64_t * ne = nullptr,
|
||||
size_t * nb = nullptr,
|
||||
int64_t dims = 0,
|
||||
aclFormat format = ACL_FORMAT_ND,
|
||||
size_t offset = 0);
|
||||
|
||||
/**
|
||||
* @brief Template for creating an ACL tensor from provided parameters. typename TYPE
|
||||
@@ -90,14 +105,14 @@ aclTensor * ggml_cann_create_tensor(const ggml_tensor * tensor,
|
||||
* @return Pointer to the created ACL tensor.
|
||||
*/
|
||||
template <typename TYPE>
|
||||
aclTensor * ggml_cann_create_tensor(void * data_ptr,
|
||||
aclDataType dtype,
|
||||
TYPE type_size,
|
||||
int64_t * ne,
|
||||
TYPE * nb,
|
||||
int64_t dims,
|
||||
aclFormat format = ACL_FORMAT_ND,
|
||||
size_t offset = 0) {
|
||||
acl_tensor_ptr ggml_cann_create_tensor(void * data_ptr,
|
||||
aclDataType dtype,
|
||||
TYPE type_size,
|
||||
int64_t * ne,
|
||||
TYPE * nb,
|
||||
int64_t dims,
|
||||
aclFormat format = ACL_FORMAT_ND,
|
||||
size_t offset = 0) {
|
||||
int64_t tmp_ne[GGML_MAX_DIMS * 2];
|
||||
int64_t tmp_stride[GGML_MAX_DIMS * 2];
|
||||
|
||||
@@ -114,10 +129,75 @@ aclTensor * ggml_cann_create_tensor(void * data_ptr,
|
||||
std::reverse(tmp_ne, tmp_ne + dims);
|
||||
std::reverse(tmp_stride, tmp_stride + dims);
|
||||
|
||||
aclTensor * acl_tensor =
|
||||
aclTensor * raw =
|
||||
aclCreateTensor(tmp_ne, dims, dtype, tmp_stride, offset / type_size, format, &acl_storage_len, 1, data_ptr);
|
||||
|
||||
return acl_tensor;
|
||||
return acl_tensor_ptr(raw);
|
||||
}
|
||||
|
||||
/**
|
||||
* @brief Create an ACL int array resource wrapped in a smart pointer.
|
||||
*
|
||||
* This function constructs an aclIntArray from the provided int64_t values
|
||||
* and returns it as an acl_int_array_ptr (a std::unique_ptr with a custom
|
||||
* deleter). The returned pointer owns the ACL resource and will automatically
|
||||
* destroy it via aclDestroyIntArray().
|
||||
*
|
||||
* @param value Pointer to the int64_t elements.
|
||||
* @param size Number of elements in value.
|
||||
*
|
||||
* @return A smart pointer managing the created ACL int array.
|
||||
*/
|
||||
acl_int_array_ptr ggml_cann_create_int_array(const int64_t * value, uint64_t size);
|
||||
|
||||
/**
|
||||
* @brief Create an ACL scalar resource wrapped in a smart pointer.
|
||||
*
|
||||
* This function constructs an aclScalar from the raw value pointer and ACL
|
||||
* data type, then returns it as an acl_scalar_ptr (a std::unique_ptr with
|
||||
* a custom deleter). The returned pointer owns the ACL scalar and will
|
||||
* automatically destroy it via aclDestroyScalar().
|
||||
*
|
||||
* @param value Pointer to the raw scalar memory.
|
||||
* @param dataType ACL data type of the scalar.
|
||||
*
|
||||
* @return A smart pointer managing the created ACL scalar.
|
||||
*/
|
||||
acl_scalar_ptr ggml_cann_create_scalar(void * value, aclDataType dataType);
|
||||
|
||||
/**
|
||||
* @brief Create an ACL tensor list from multiple tensor smart pointers.
|
||||
*
|
||||
* This function accepts a variadic list of acl_tensor_ptr (a unique_ptr with
|
||||
* custom deleter) and produces an aclTensorList using aclCreateTensorList().
|
||||
*
|
||||
* The lifecycle management of the tensor objects changes as follows:
|
||||
* - aclCreateTensorList() takes ownership of the tensors
|
||||
* - Each input smart pointer releases ownership using release()
|
||||
* - As a result, the tensors will NOT be destroyed by unique_ptr
|
||||
* - Instead, they will be destroyed when aclDestroyTensorList() is called
|
||||
*
|
||||
* This ensures correct ownership transfer and prevents double-free situations.
|
||||
*
|
||||
* @param acl_tensor_ptr Variadic template parameter; each argument must be
|
||||
* a unique_ptr-like type supporting get() and release().
|
||||
*
|
||||
* @param tensors Variadic list of acl_tensor_ptr objects. Ownership of
|
||||
* each tensor is transferred away from these smart pointers.
|
||||
*
|
||||
* @return A smart pointer (acl_tensor_list_ptr) owning the created ACL tensor list.
|
||||
*
|
||||
* @note This implementation is C++11 compatible. The ownership-release process is
|
||||
* executed using a pack expansion inside an initializer list.
|
||||
*/
|
||||
template <typename... acl_tensor_ptr> acl_tensor_list_ptr ggml_cann_create_tensor_list(acl_tensor_ptr &&... tensors) {
|
||||
aclTensor * raw_tensors[] = { tensors.get()... };
|
||||
aclTensorList * raw = aclCreateTensorList(raw_tensors, sizeof...(tensors));
|
||||
// aclTensor will release by aclTensorList, so release ownership without
|
||||
// destroying the tensor
|
||||
int dummy[] = { (tensors.release(), 0)... };
|
||||
GGML_UNUSED(dummy);
|
||||
return acl_tensor_list_ptr(raw);
|
||||
}
|
||||
|
||||
/**
|
||||
|
||||
File diff suppressed because it is too large
Load Diff
@@ -23,33 +23,35 @@
|
||||
#ifndef CANN_ACLNN_OPS
|
||||
#define CANN_ACLNN_OPS
|
||||
|
||||
#include <unordered_set>
|
||||
#include <functional>
|
||||
#include "acl_tensor.h"
|
||||
#include "common.h"
|
||||
|
||||
#include <aclnnop/aclnn_abs.h>
|
||||
#include <aclnnop/aclnn_neg.h>
|
||||
#include <aclnnop/aclnn_exp.h>
|
||||
#include <aclnnop/aclnn_arange.h>
|
||||
#include <aclnnop/aclnn_argsort.h>
|
||||
#include <aclnnop/aclnn_cat.h>
|
||||
#include <aclnnop/aclnn_clamp.h>
|
||||
#include <aclnnop/aclnn_cos.h>
|
||||
#include <aclnnop/aclnn_exp.h>
|
||||
#include <aclnnop/aclnn_gelu.h>
|
||||
#include <aclnnop/aclnn_gelu_v2.h>
|
||||
#include <aclnnop/aclnn_sigmoid.h>
|
||||
#include <aclnnop/aclnn_hardsigmoid.h>
|
||||
#include <aclnnop/aclnn_hardswish.h>
|
||||
#include <aclnnop/aclnn_leaky_relu.h>
|
||||
#include <aclnnop/aclnn_relu.h>
|
||||
#include <aclnnop/aclnn_silu.h>
|
||||
#include <aclnnop/aclnn_tanh.h>
|
||||
#include <aclnnop/aclnn_sqrt.h>
|
||||
#include <aclnnop/aclnn_sin.h>
|
||||
#include <aclnnop/aclnn_cos.h>
|
||||
#include <aclnnop/aclnn_log.h>
|
||||
#include <aclnnop/aclnn_sign.h>
|
||||
#include <aclnnop/aclnn_norm.h>
|
||||
#include <aclnnop/aclnn_logsoftmax.h>
|
||||
#include "acl_tensor.h"
|
||||
#include "common.h"
|
||||
#include <aclnnop/aclnn_neg.h>
|
||||
#include <aclnnop/aclnn_norm.h>
|
||||
#include <aclnnop/aclnn_relu.h>
|
||||
#include <aclnnop/aclnn_sigmoid.h>
|
||||
#include <aclnnop/aclnn_sign.h>
|
||||
#include <aclnnop/aclnn_silu.h>
|
||||
#include <aclnnop/aclnn_sin.h>
|
||||
#include <aclnnop/aclnn_sqrt.h>
|
||||
#include <aclnnop/aclnn_tanh.h>
|
||||
|
||||
#include <functional>
|
||||
#include <unordered_set>
|
||||
|
||||
/**
|
||||
* @brief Repeats a ggml tensor along each dimension to match the dimensions
|
||||
@@ -688,12 +690,12 @@ void aclnn_sin(ggml_backend_cann_context & ctx, aclTensor * acl_src, aclTensor *
|
||||
* @param acl_src1 Output pointer to the created ACL tensor corresponding to src1.
|
||||
* @param acl_dst Output pointer to the created ACL tensor corresponding to dst.
|
||||
*/
|
||||
void bcast_shape(ggml_tensor * src0,
|
||||
ggml_tensor * src1,
|
||||
ggml_tensor * dst,
|
||||
aclTensor ** acl_src0,
|
||||
aclTensor ** acl_src1,
|
||||
aclTensor ** acl_dst);
|
||||
void bcast_shape(ggml_tensor * src0,
|
||||
ggml_tensor * src1,
|
||||
ggml_tensor * dst,
|
||||
acl_tensor_ptr & acl_src0,
|
||||
acl_tensor_ptr & acl_src1,
|
||||
acl_tensor_ptr & acl_dst);
|
||||
|
||||
/**
|
||||
* @brief Computes the 1D transposed convolution (deconvolution) of a ggml
|
||||
@@ -873,83 +875,6 @@ template <typename... Args> void register_acl_resources(std::vector<any_acl_reso
|
||||
(vec.emplace_back(make_acl_resource(args)), ...);
|
||||
}
|
||||
|
||||
/**
|
||||
* @brief Task class that wraps the execution of an aclnn function call.
|
||||
*/
|
||||
class aclnn_task : public cann_task {
|
||||
public:
|
||||
aclnn_task(aclnn_func_t aclnn_func,
|
||||
void * workspace_addr,
|
||||
uint64_t workspace_size,
|
||||
aclOpExecutor * executor,
|
||||
aclrtStream stream) :
|
||||
aclnn_func_(aclnn_func),
|
||||
workspace_addr_(workspace_addr),
|
||||
workspace_size_(workspace_size),
|
||||
executor_(executor),
|
||||
stream_(stream) {}
|
||||
|
||||
virtual void run_task() override { ACL_CHECK(aclnn_func_(workspace_addr_, workspace_size_, executor_, stream_)); }
|
||||
private:
|
||||
aclnn_func_t aclnn_func_;
|
||||
void * workspace_addr_;
|
||||
uint64_t workspace_size_;
|
||||
aclOpExecutor * executor_;
|
||||
aclrtStream stream_;
|
||||
};
|
||||
|
||||
/**
|
||||
* @brief Task class that releases ACL resources after usage.
|
||||
*/
|
||||
class release_resource_task : public cann_task {
|
||||
public:
|
||||
release_resource_task(std::vector<any_acl_resource> && resources) { resource_ = std::move(resources); }
|
||||
|
||||
virtual void run_task() override { resource_.clear(); }
|
||||
private:
|
||||
std::vector<any_acl_resource> resource_;
|
||||
};
|
||||
|
||||
/**
|
||||
* @brief Task class for performing asynchronous memory copy operations.
|
||||
*/
|
||||
class async_memcpy_task : public cann_task {
|
||||
public:
|
||||
async_memcpy_task(void * dst, const void * src, size_t size, aclrtMemcpyKind kind, aclrtStream stream) :
|
||||
dst_(dst),
|
||||
src_(src),
|
||||
size_(size),
|
||||
kind_(kind),
|
||||
stream_(stream) {}
|
||||
|
||||
virtual void run_task() override { ACL_CHECK(aclrtMemcpyAsync(dst_, size_, src_, size_, kind_, stream_)); }
|
||||
private:
|
||||
void * dst_;
|
||||
const void * src_;
|
||||
size_t size_;
|
||||
aclrtMemcpyKind kind_;
|
||||
aclrtStream stream_;
|
||||
};
|
||||
|
||||
/**
|
||||
* @brief Task class for performing asynchronous memory set operations.
|
||||
*/
|
||||
class async_memset_task : public cann_task {
|
||||
public:
|
||||
async_memset_task(void * buffer, size_t size, int32_t value, aclrtStream stream) :
|
||||
buffer_(buffer),
|
||||
size_(size),
|
||||
value_(value),
|
||||
stream_(stream) {}
|
||||
|
||||
virtual void run_task() override { ACL_CHECK(aclrtMemsetAsync(buffer_, size_, value_, size_, stream_)); }
|
||||
private:
|
||||
void * buffer_;
|
||||
size_t size_;
|
||||
int32_t value_;
|
||||
aclrtStream stream_;
|
||||
};
|
||||
|
||||
/**
|
||||
* @brief Launches an asynchronous task using the memory allocator.
|
||||
*
|
||||
@@ -968,95 +893,20 @@ class async_memset_task : public cann_task {
|
||||
* same stream are executed in queue order.
|
||||
*/
|
||||
|
||||
#define GGML_CANN_CALL_ACLNN_OP(CTX, OP_NAME, ...) \
|
||||
do { \
|
||||
uint64_t workspaceSize = 0; \
|
||||
aclOpExecutor * executor; \
|
||||
void * workspaceAddr = nullptr; \
|
||||
ACL_CHECK(aclnn##OP_NAME##GetWorkspaceSize(__VA_ARGS__, &workspaceSize, &executor)); \
|
||||
/* workspace should alloced in main thread to keep malloc order when using vmm. */ \
|
||||
if (workspaceSize > 0) { \
|
||||
ggml_cann_pool_alloc workspace_allocator(CTX.pool(), workspaceSize); \
|
||||
workspaceAddr = workspace_allocator.get(); \
|
||||
} \
|
||||
if (CTX.async_mode) { \
|
||||
auto task = \
|
||||
std::make_unique<aclnn_task>(aclnn##OP_NAME, workspaceAddr, workspaceSize, executor, CTX.stream()); \
|
||||
CTX.task_queue.submit_task(std::move(task)); \
|
||||
} else { \
|
||||
ACL_CHECK(aclnn##OP_NAME(workspaceAddr, workspaceSize, executor, CTX.stream())); \
|
||||
} \
|
||||
#define GGML_CANN_CALL_ACLNN_OP(CTX, OP_NAME, ...) \
|
||||
do { \
|
||||
uint64_t workspaceSize = 0; \
|
||||
aclOpExecutor * executor; \
|
||||
void * workspaceAddr = nullptr; \
|
||||
ACL_CHECK(aclnn##OP_NAME##GetWorkspaceSize(__VA_ARGS__, &workspaceSize, &executor)); \
|
||||
/* workspace should alloced in main thread to keep malloc order when using vmm. */ \
|
||||
if (workspaceSize > 0) { \
|
||||
ggml_cann_pool_alloc workspace_allocator(CTX.pool(), workspaceSize); \
|
||||
workspaceAddr = workspace_allocator.get(); \
|
||||
} \
|
||||
ACL_CHECK(aclnn##OP_NAME(workspaceAddr, workspaceSize, executor, CTX.stream())); \
|
||||
} while (0)
|
||||
|
||||
/**
|
||||
* @brief Registers and releases multiple ACL resources, optionally deferring the release
|
||||
* using a task.
|
||||
*
|
||||
* @tparam Args Types of the ACL resources.
|
||||
* @param ctx Backend context which manages task submission and async mode.
|
||||
* @param args Pointers to ACL resources to be released.
|
||||
*/
|
||||
template <typename... Args> void ggml_cann_release_resources(ggml_backend_cann_context & ctx, Args &&... args) {
|
||||
std::vector<any_acl_resource> resources;
|
||||
register_acl_resources(resources, std::forward<Args>(args)...);
|
||||
if (ctx.async_mode) {
|
||||
auto task = std::make_unique<release_resource_task>(std::move(resources));
|
||||
ctx.task_queue.submit_task(std::move(task));
|
||||
}
|
||||
}
|
||||
|
||||
/**
|
||||
* @brief Performs an asynchronous memory copy operation, optionally deferred via task submission.
|
||||
*
|
||||
* @param ctx Backend context containing stream and async configuration.
|
||||
* @param dst Destination memory address.
|
||||
* @param src Source memory address.
|
||||
* @param len Size of memory to copy (in bytes).
|
||||
* @param kind Type of memory copy (host-to-device, device-to-host, etc).
|
||||
*/
|
||||
inline void ggml_cann_async_memcpy(ggml_backend_cann_context & ctx,
|
||||
void * dst,
|
||||
const void * src,
|
||||
size_t len,
|
||||
aclrtMemcpyKind kind) {
|
||||
if (ctx.async_mode) {
|
||||
auto task = std::make_unique<async_memcpy_task>(dst, const_cast<void *>(src), len, kind, ctx.stream());
|
||||
ctx.task_queue.submit_task(std::move(task));
|
||||
} else {
|
||||
ACL_CHECK(aclrtMemcpyAsync(dst, len, src, len, kind, ctx.stream()));
|
||||
}
|
||||
}
|
||||
|
||||
inline void ggml_cann_async_memcpy(ggml_backend_cann_context * ctx,
|
||||
void * dst,
|
||||
const void * src,
|
||||
size_t len,
|
||||
aclrtMemcpyKind kind) {
|
||||
if (ctx->async_mode) {
|
||||
auto task = std::make_unique<async_memcpy_task>(dst, const_cast<void *>(src), len, kind, ctx->stream());
|
||||
ctx->task_queue.submit_task(std::move(task));
|
||||
} else {
|
||||
ACL_CHECK(aclrtMemcpyAsync(dst, len, src, len, kind, ctx->stream()));
|
||||
}
|
||||
}
|
||||
|
||||
/**
|
||||
* @brief Performs an asynchronous memory set operation, optionally deferred via task submission.
|
||||
*
|
||||
* @param ctx Backend context containing stream and async configuration.
|
||||
* @param buffer Memory buffer to be set.
|
||||
* @param size Size of the memory buffer (in bytes).
|
||||
* @param value Value to set in the buffer.
|
||||
*/
|
||||
inline void ggml_cann_async_memset(ggml_backend_cann_context & ctx, void * buffer, size_t size, int value) {
|
||||
if (ctx.async_mode) {
|
||||
auto task = std::make_unique<async_memset_task>(buffer, size, value, ctx.stream());
|
||||
ctx.task_queue.submit_task(std::move(task));
|
||||
} else {
|
||||
ACL_CHECK(aclrtMemsetAsync(buffer, size, value, size, ctx.stream()));
|
||||
}
|
||||
}
|
||||
|
||||
/**
|
||||
* @brief Performs sparse expert-based matrix multiplication using the CANN backend.
|
||||
*
|
||||
@@ -1129,15 +979,11 @@ template <auto binary_op> void ggml_cann_binary_op(ggml_backend_cann_context & c
|
||||
ggml_tensor * src0 = dst->src[0];
|
||||
ggml_tensor * src1 = dst->src[1];
|
||||
|
||||
aclTensor * acl_src0;
|
||||
aclTensor * acl_src1;
|
||||
aclTensor * acl_dst;
|
||||
acl_tensor_ptr acl_src0, acl_src1, acl_dst;
|
||||
|
||||
// Need bcast
|
||||
bcast_shape(src0, src1, dst, &acl_src0, &acl_src1, &acl_dst);
|
||||
binary_op(ctx, acl_src0, acl_src1, acl_dst);
|
||||
|
||||
ggml_cann_release_resources(ctx, acl_src0, acl_src1, acl_dst);
|
||||
bcast_shape(src0, src1, dst, acl_src0, acl_src1, acl_dst);
|
||||
binary_op(ctx, acl_src0.get(), acl_src1.get(), acl_dst.get());
|
||||
}
|
||||
|
||||
/**
|
||||
@@ -1147,7 +993,7 @@ template <auto binary_op> void ggml_cann_binary_op(ggml_backend_cann_context & c
|
||||
* and stores the result in the destination tensor.
|
||||
*
|
||||
* @tparam unary_op A callable with the signature:
|
||||
* void(ggml_backend_cann_context&, aclTensor*, aclTensor*)
|
||||
* void(ggml_backend_cann_context&, aclTensor *, aclTensor *)
|
||||
* where the first aclTensor is the source and the second is the destination.
|
||||
* @param ctx The CANN backend context for managing resources and execution.
|
||||
* @param dst The destination tensor. Its src[0] is treated as the input tensor.
|
||||
@@ -1156,11 +1002,10 @@ template <void unary_op(ggml_backend_cann_context &, aclTensor *, aclTensor *)>
|
||||
void ggml_cann_op_unary(ggml_backend_cann_context & ctx, ggml_tensor * dst) {
|
||||
ggml_tensor * src = dst->src[0];
|
||||
|
||||
aclTensor * acl_src = ggml_cann_create_tensor(src);
|
||||
aclTensor * acl_dst = ggml_cann_create_tensor(dst);
|
||||
acl_tensor_ptr acl_src = ggml_cann_create_tensor(src);
|
||||
acl_tensor_ptr acl_dst = ggml_cann_create_tensor(dst);
|
||||
|
||||
unary_op(ctx, acl_src, acl_dst);
|
||||
ggml_cann_release_resources(ctx, acl_src, acl_dst);
|
||||
unary_op(ctx, acl_src.get(), acl_dst.get());
|
||||
}
|
||||
|
||||
/**
|
||||
|
||||
@@ -23,26 +23,26 @@
|
||||
#ifndef CANN_COMMON_H
|
||||
#define CANN_COMMON_H
|
||||
|
||||
#include <acl/acl.h>
|
||||
|
||||
#include <cstdio>
|
||||
#include <iostream>
|
||||
#include <map>
|
||||
#include <memory>
|
||||
#include <string>
|
||||
#include <vector>
|
||||
#include <atomic>
|
||||
#include <condition_variable>
|
||||
#include <mutex>
|
||||
#include <thread>
|
||||
#include <unistd.h>
|
||||
#include <functional>
|
||||
#include <optional>
|
||||
#include <list>
|
||||
|
||||
#include "../ggml-impl.h"
|
||||
#include "../include/ggml-cann.h"
|
||||
#include "../include/ggml.h"
|
||||
#include "../ggml-impl.h"
|
||||
|
||||
#include <acl/acl.h>
|
||||
#include <unistd.h>
|
||||
|
||||
#include <atomic>
|
||||
#include <condition_variable>
|
||||
#include <cstdio>
|
||||
#include <functional>
|
||||
#include <iostream>
|
||||
#include <list>
|
||||
#include <map>
|
||||
#include <memory>
|
||||
#include <mutex>
|
||||
#include <optional>
|
||||
#include <string>
|
||||
#include <thread>
|
||||
#include <vector>
|
||||
|
||||
#define MATRIX_ROW_PADDING 512
|
||||
#define GGML_CANN_MAX_STREAMS 8
|
||||
@@ -214,130 +214,6 @@ struct ggml_cann_pool_alloc {
|
||||
ggml_cann_pool_alloc & operator=(ggml_cann_pool_alloc &&) = delete;
|
||||
};
|
||||
|
||||
/**
|
||||
* @brief Function pointer type for ACLNN operator calls.
|
||||
*/
|
||||
using aclnn_func_t = aclnnStatus (*)(void *, uint64_t, aclOpExecutor *, aclrtStream);
|
||||
|
||||
/**
|
||||
* @brief Base class for all CANN tasks to be submitted to the task queue.
|
||||
*
|
||||
* Users should override the run_task() method with actual task logic.
|
||||
*/
|
||||
class cann_task {
|
||||
public:
|
||||
virtual void run_task() {}
|
||||
};
|
||||
|
||||
/**
|
||||
* @brief A lock-free ring-buffer based task queue for asynchronously executing cann_task instances.
|
||||
*/
|
||||
class cann_task_queue {
|
||||
public:
|
||||
/**
|
||||
* @brief Constructs a task queue with a fixed power-of-two capacity for a specific device.
|
||||
*
|
||||
* @param capacity Queue capacity. Must be a power of 2.
|
||||
* @param device Target device ID (used for context setting).
|
||||
*/
|
||||
explicit cann_task_queue(size_t capacity, int32_t device) :
|
||||
buffer_(capacity),
|
||||
capacity_(capacity),
|
||||
head_(0),
|
||||
tail_(0),
|
||||
running_(false),
|
||||
device_(device) {
|
||||
GGML_ASSERT((capacity & (capacity - 1)) == 0 && "capacity must be power of 2");
|
||||
mask_ = capacity_ - 1;
|
||||
}
|
||||
|
||||
/**
|
||||
* @brief Attempts to enqueue a task into the queue.
|
||||
*
|
||||
* @param item Unique pointer to the task.
|
||||
* @return true if the task was successfully enqueued, false if the queue was full.
|
||||
*/
|
||||
bool enqueue(std::unique_ptr<cann_task> && item) {
|
||||
size_t next_tail = (tail_ + 1) & mask_;
|
||||
|
||||
if (next_tail == head_) {
|
||||
return false;
|
||||
}
|
||||
|
||||
buffer_[tail_] = std::move(item);
|
||||
std::atomic_thread_fence(std::memory_order_release);
|
||||
tail_ = next_tail;
|
||||
|
||||
return true;
|
||||
}
|
||||
|
||||
/**
|
||||
* @brief Submits a task to the queue, and starts the worker thread if not already running.
|
||||
*
|
||||
* @param task Task to be submitted.
|
||||
*/
|
||||
void submit_task(std::unique_ptr<cann_task> && task) {
|
||||
while (!enqueue(std::move(task))) {
|
||||
std::this_thread::yield();
|
||||
continue;
|
||||
}
|
||||
|
||||
if (!running_) {
|
||||
running_ = true;
|
||||
thread_ = std::thread(&cann_task_queue::execute, this);
|
||||
}
|
||||
}
|
||||
|
||||
/**
|
||||
* @brief Waits until the queue is completely empty and no tasks are being processed.
|
||||
*/
|
||||
void wait() {
|
||||
while (running_ && head_ != tail_) {
|
||||
std::this_thread::yield();
|
||||
continue;
|
||||
}
|
||||
}
|
||||
|
||||
/**
|
||||
* @brief Stops the task queue and joins the worker thread.
|
||||
*/
|
||||
void stop() {
|
||||
running_ = false;
|
||||
if (thread_.joinable()) {
|
||||
thread_.join();
|
||||
}
|
||||
}
|
||||
|
||||
private:
|
||||
/**
|
||||
* @brief Worker thread function that continuously dequeues and executes tasks.
|
||||
*/
|
||||
void execute() {
|
||||
ggml_cann_set_device(device_);
|
||||
|
||||
while (running_) {
|
||||
if (head_ == tail_) {
|
||||
std::this_thread::yield();
|
||||
continue;
|
||||
}
|
||||
|
||||
std::atomic_thread_fence(std::memory_order_acquire);
|
||||
buffer_[head_]->run_task();
|
||||
buffer_[head_].reset();
|
||||
head_ = (head_ + 1) & mask_;
|
||||
}
|
||||
}
|
||||
|
||||
std::vector<std::unique_ptr<cann_task>> buffer_;
|
||||
const size_t capacity_;
|
||||
size_t mask_;
|
||||
size_t head_;
|
||||
size_t tail_;
|
||||
bool running_;
|
||||
std::thread thread_;
|
||||
int32_t device_;
|
||||
};
|
||||
|
||||
#ifdef USE_ACL_GRAPH
|
||||
struct ggml_graph_node_properties {
|
||||
// dst tensor
|
||||
@@ -474,7 +350,6 @@ struct ggml_backend_cann_context {
|
||||
ggml_cann_graph_lru_cache graph_lru_cache;
|
||||
bool acl_graph_mode = true;
|
||||
#endif
|
||||
cann_task_queue task_queue;
|
||||
bool async_mode;
|
||||
// Rope Cache
|
||||
ggml_cann_rope_cache rope_cache;
|
||||
@@ -488,15 +363,10 @@ struct ggml_backend_cann_context {
|
||||
* @brief Constructor for initializing the context with a given device.
|
||||
* @param device Device ID.
|
||||
*/
|
||||
explicit ggml_backend_cann_context(int device) :
|
||||
device(device),
|
||||
name("CANN" + std::to_string(device)),
|
||||
task_queue(1024, device) {
|
||||
explicit ggml_backend_cann_context(int device) : device(device), name("CANN" + std::to_string(device)) {
|
||||
ggml_cann_set_device(device);
|
||||
description = aclrtGetSocName();
|
||||
|
||||
async_mode = parse_bool(get_env("GGML_CANN_ASYNC_MODE").value_or(""));
|
||||
GGML_LOG_INFO("%s: device %d async operator submission is %s\n", __func__, device, async_mode ? "ON" : "OFF");
|
||||
#ifdef USE_ACL_GRAPH
|
||||
acl_graph_mode = parse_bool(get_env("GGML_CANN_ACL_GRAPH").value_or("on"));
|
||||
GGML_LOG_INFO("%s: device %d execution mode is %s (%s)\n", __func__, device, acl_graph_mode ? "GRAPH" : "EAGER",
|
||||
@@ -509,7 +379,6 @@ struct ggml_backend_cann_context {
|
||||
*/
|
||||
~ggml_backend_cann_context() {
|
||||
ggml_cann_set_device(device);
|
||||
task_queue.stop();
|
||||
if (copy_event != nullptr) {
|
||||
ACL_CHECK(aclrtDestroyEvent(copy_event));
|
||||
}
|
||||
|
||||
@@ -22,24 +22,24 @@
|
||||
|
||||
#include "ggml-cann.h"
|
||||
|
||||
#include <acl/acl.h>
|
||||
#include <stdarg.h>
|
||||
#include <aclnnop/aclnn_trans_matmul_weight.h>
|
||||
#include "ggml-backend-impl.h"
|
||||
#include "ggml-cann/aclnn_ops.h"
|
||||
#include "ggml-cann/common.h"
|
||||
#include "ggml-impl.h"
|
||||
#include "ggml.h"
|
||||
|
||||
#include <acl/acl.h>
|
||||
#include <aclnnop/aclnn_trans_matmul_weight.h>
|
||||
#include <stdarg.h>
|
||||
|
||||
#include <chrono>
|
||||
#include <cmath>
|
||||
#include <cstdio>
|
||||
#include <cstring>
|
||||
#include <mutex>
|
||||
#include <queue>
|
||||
#include <chrono>
|
||||
#include <unordered_set>
|
||||
#include <optional>
|
||||
|
||||
#include "ggml-impl.h"
|
||||
#include "ggml-backend-impl.h"
|
||||
#include "ggml-cann/aclnn_ops.h"
|
||||
#include "ggml-cann/common.h"
|
||||
#include "ggml.h"
|
||||
#include <queue>
|
||||
#include <unordered_set>
|
||||
|
||||
#define GGML_COMMON_DECL_C
|
||||
|
||||
@@ -1177,19 +1177,18 @@ static ggml_cann_nz_workspace g_nz_workspaces[GGML_CANN_MAX_DEVICES];
|
||||
* across calls. This reduces overhead from repeated memory allocation and deallocation.
|
||||
*/
|
||||
static void weight_format_to_nz(ggml_tensor * tensor, size_t offset, int device) {
|
||||
aclTensor * weightTransposed = ggml_cann_create_tensor(tensor, tensor->ne, tensor->nb, 2, ACL_FORMAT_ND, offset);
|
||||
uint64_t workspaceSize = 0;
|
||||
acl_tensor_ptr weightTransposed = ggml_cann_create_tensor(tensor, tensor->ne, tensor->nb, 2, ACL_FORMAT_ND, offset);
|
||||
uint64_t workspaceSize = 0;
|
||||
aclOpExecutor * executor;
|
||||
|
||||
// TransMatmulWeight
|
||||
ACL_CHECK(aclnnTransMatmulWeightGetWorkspaceSize(weightTransposed, &workspaceSize, &executor));
|
||||
ACL_CHECK(aclnnTransMatmulWeightGetWorkspaceSize(weightTransposed.get(), &workspaceSize, &executor));
|
||||
// Avoid frequent malloc/free of the workspace.
|
||||
g_nz_workspaces[device].realloc(workspaceSize);
|
||||
|
||||
void * g_nz_workspace = g_nz_workspaces[device].get();
|
||||
|
||||
ACL_CHECK(aclnnTransMatmulWeight(g_nz_workspace, workspaceSize, executor, nullptr));
|
||||
ACL_CHECK(aclDestroyTensor(weightTransposed));
|
||||
}
|
||||
|
||||
// TODO: need handle tensor which has paddings.
|
||||
@@ -1641,7 +1640,7 @@ ggml_backend_buffer_type_t ggml_backend_cann_host_buffer_type() {
|
||||
/* .is_host = */ ggml_backend_cpu_buffer_type()->iface.is_host,
|
||||
},
|
||||
/* .device = */
|
||||
ggml_backend_reg_dev_get(ggml_backend_cann_reg(), 0),
|
||||
ggml_backend_reg_dev_get(ggml_backend_cann_reg(), 0),
|
||||
/* .context = */ nullptr,
|
||||
};
|
||||
|
||||
@@ -1949,7 +1948,8 @@ static void ggml_backend_cann_set_tensor_async(ggml_backend_t backend,
|
||||
GGML_ASSERT(buf->buft == ggml_backend_cann_buffer_type(cann_ctx->device) && "unsupported buffer type");
|
||||
GGML_ASSERT(!ggml_is_quantized(tensor->type));
|
||||
|
||||
ggml_cann_async_memcpy(cann_ctx, (char *) tensor->data + offset, data, size, ACL_MEMCPY_HOST_TO_DEVICE);
|
||||
ACL_CHECK(aclrtMemcpyAsync((char *) tensor->data + offset, size, data, size, ACL_MEMCPY_HOST_TO_DEVICE,
|
||||
cann_ctx->stream()));
|
||||
}
|
||||
|
||||
/**
|
||||
@@ -1974,7 +1974,8 @@ static void ggml_backend_cann_get_tensor_async(ggml_backend_t backend,
|
||||
GGML_ASSERT(buf->buft == ggml_backend_cann_buffer_type(cann_ctx->device) && "unsupported buffer type");
|
||||
GGML_ASSERT(!ggml_is_quantized(tensor->type));
|
||||
|
||||
ggml_cann_async_memcpy(cann_ctx, data, (char *) tensor->data + offset, size, ACL_MEMCPY_DEVICE_TO_HOST);
|
||||
ACL_CHECK(aclrtMemcpyAsync(data, size, (char *) tensor->data + offset, size, ACL_MEMCPY_DEVICE_TO_HOST,
|
||||
cann_ctx->stream()));
|
||||
}
|
||||
|
||||
/**
|
||||
@@ -2035,7 +2036,6 @@ static bool ggml_backend_cann_cpy_tensor_async(ggml_backend_t backend_src,
|
||||
ACL_CHECK(aclrtDeviceEnablePeerAccess(cann_ctx_dst->device, 0));
|
||||
|
||||
// wait for task_queue empty to keep task order.
|
||||
cann_ctx_src->task_queue.wait();
|
||||
ACL_CHECK(aclrtMemcpyAsync(dst->data, copy_size, src->data, copy_size, ACL_MEMCPY_DEVICE_TO_DEVICE,
|
||||
cann_ctx_src->stream()));
|
||||
// record event on src stream after the copy
|
||||
@@ -2068,7 +2068,6 @@ static bool ggml_backend_cann_cpy_tensor_async(ggml_backend_t backend_src,
|
||||
*/
|
||||
static void ggml_backend_cann_synchronize(ggml_backend_t backend) {
|
||||
ggml_backend_cann_context * cann_ctx = (ggml_backend_cann_context *) backend->context;
|
||||
cann_ctx->task_queue.wait();
|
||||
ggml_cann_set_device(cann_ctx->device);
|
||||
ACL_CHECK(aclrtSynchronizeStream(cann_ctx->stream()));
|
||||
}
|
||||
@@ -2485,6 +2484,9 @@ static bool ggml_backend_cann_supports_op(ggml_backend_dev_t dev, const ggml_ten
|
||||
if (mode & GGML_ROPE_TYPE_VISION) {
|
||||
return false;
|
||||
}
|
||||
if (op->src[0]->ne[0] > 896) {
|
||||
return false;
|
||||
}
|
||||
#ifdef ASCEND_310P
|
||||
if (!ggml_is_contiguous(op->src[0])) {
|
||||
return false;
|
||||
@@ -2521,10 +2523,11 @@ static bool ggml_backend_cann_supports_op(ggml_backend_dev_t dev, const ggml_ten
|
||||
// value of paddingW should be at most half of kernelW
|
||||
return (p0 <= (k0 / 2)) && (p1 <= (k1 / 2));
|
||||
}
|
||||
case GGML_OP_SUM:
|
||||
return ggml_is_contiguous_rows(op->src[0]);
|
||||
case GGML_OP_L2_NORM:
|
||||
case GGML_OP_CROSS_ENTROPY_LOSS:
|
||||
case GGML_OP_DUP:
|
||||
case GGML_OP_SUM:
|
||||
case GGML_OP_IM2COL:
|
||||
case GGML_OP_CONCAT:
|
||||
case GGML_OP_REPEAT:
|
||||
|
||||
Reference in New Issue
Block a user