mirror of
				https://github.com/ggml-org/llama.cpp.git
				synced 2025-11-04 09:32:00 +00:00 
			
		
		
		
	gguf : refactor pth to gguf conversion script
This commit is contained in:
		@@ -18,6 +18,7 @@ from sentencepiece import SentencePieceProcessor
 | 
				
			|||||||
# compatible with python < 3.9
 | 
					# compatible with python < 3.9
 | 
				
			||||||
NDArray: 'TypeAlias' = 'np.ndarray[Any, Any]'
 | 
					NDArray: 'TypeAlias' = 'np.ndarray[Any, Any]'
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					
 | 
				
			||||||
def count_model_parts(dir_model: str) -> int:
 | 
					def count_model_parts(dir_model: str) -> int:
 | 
				
			||||||
    num_parts = 0
 | 
					    num_parts = 0
 | 
				
			||||||
    for filename in os.listdir(dir_model):
 | 
					    for filename in os.listdir(dir_model):
 | 
				
			||||||
@@ -28,10 +29,12 @@ def count_model_parts(dir_model: str) -> int:
 | 
				
			|||||||
        print("gguf: found " + str(num_parts) + " model parts")
 | 
					        print("gguf: found " + str(num_parts) + " model parts")
 | 
				
			||||||
    return num_parts
 | 
					    return num_parts
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					
 | 
				
			||||||
if len(sys.argv) < 3:
 | 
					if len(sys.argv) < 3:
 | 
				
			||||||
    print("Usage: convert-h5-to-ggml.py dir-model ftype\n")
 | 
					    print("Usage: convert-h5-to-ggml.py dir-model ftype\n")
 | 
				
			||||||
    print("  ftype == 0 -> float32")
 | 
					    print("  ftype == 0 -> float32")
 | 
				
			||||||
    print("  ftype == 1 -> float16")
 | 
					    print("  ftype == 1 -> float16")
 | 
				
			||||||
 | 
					
 | 
				
			||||||
    sys.exit(1)
 | 
					    sys.exit(1)
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					
 | 
				
			||||||
@@ -43,7 +46,7 @@ last_dir = os.path.basename(os.path.normpath(dir_model))
 | 
				
			|||||||
# possible tensor data types
 | 
					# possible tensor data types
 | 
				
			||||||
#   ftype == 0 -> float32
 | 
					#   ftype == 0 -> float32
 | 
				
			||||||
#   ftype == 1 -> float16
 | 
					#   ftype == 1 -> float16
 | 
				
			||||||
#
 | 
					
 | 
				
			||||||
# map from ftype to string
 | 
					# map from ftype to string
 | 
				
			||||||
ftype_str = ["f32", "f16"]
 | 
					ftype_str = ["f32", "f16"]
 | 
				
			||||||
 | 
					
 | 
				
			||||||
@@ -52,6 +55,7 @@ if len(sys.argv) > 2:
 | 
				
			|||||||
    ftype = int(sys.argv[2])
 | 
					    ftype = int(sys.argv[2])
 | 
				
			||||||
    if ftype < 0 or ftype > 1:
 | 
					    if ftype < 0 or ftype > 1:
 | 
				
			||||||
        print("Invalid ftype: " + str(ftype))
 | 
					        print("Invalid ftype: " + str(ftype))
 | 
				
			||||||
 | 
					
 | 
				
			||||||
        sys.exit(1)
 | 
					        sys.exit(1)
 | 
				
			||||||
 | 
					
 | 
				
			||||||
fname_out = sys.argv[1] + "/ggml-model-" + ftype_str[ftype] + ".gguf"
 | 
					fname_out = sys.argv[1] + "/ggml-model-" + ftype_str[ftype] + ".gguf"
 | 
				
			||||||
@@ -70,14 +74,14 @@ num_parts = count_model_parts(dir_model)
 | 
				
			|||||||
 | 
					
 | 
				
			||||||
if num_parts > 1:
 | 
					if num_parts > 1:
 | 
				
			||||||
    print("gguf: Only models with a single datafile are supported.")
 | 
					    print("gguf: Only models with a single datafile are supported.")
 | 
				
			||||||
    sys.exit()
 | 
					 | 
				
			||||||
 | 
					
 | 
				
			||||||
gguf_writer = gguf.GGUFWriter.open(fname_out)
 | 
					    sys.exit()
 | 
				
			||||||
 | 
					llm_arch = "llama"
 | 
				
			||||||
 | 
					gguf_writer = gguf.GGUFWriter(fname_out, arch=llm_arch)
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					
 | 
				
			||||||
print("gguf: get model metadata")
 | 
					print("gguf: get model metadata")
 | 
				
			||||||
 | 
					
 | 
				
			||||||
llm_arch = "llama"
 | 
					 | 
				
			||||||
block_count = hparams["num_hidden_layers"]
 | 
					block_count = hparams["num_hidden_layers"]
 | 
				
			||||||
head_count = hparams["num_attention_heads"]
 | 
					head_count = hparams["num_attention_heads"]
 | 
				
			||||||
 | 
					
 | 
				
			||||||
@@ -91,19 +95,18 @@ if "_name_or_path" in hparams:
 | 
				
			|||||||
else:
 | 
					else:
 | 
				
			||||||
    hf_repo = ""
 | 
					    hf_repo = ""
 | 
				
			||||||
 | 
					
 | 
				
			||||||
gguf_writer.add_architecture(llm_arch)
 | 
					gguf_writer.add_architecture()
 | 
				
			||||||
gguf_writer.add_name(last_dir)
 | 
					gguf_writer.add_name(last_dir)
 | 
				
			||||||
gguf_writer.add_file_type( "All tensors F32" if ftype == 0 else "Most tensors F16, some F32")
 | 
					 | 
				
			||||||
gguf_writer.add_source_hf_repo(hf_repo)
 | 
					gguf_writer.add_source_hf_repo(hf_repo)
 | 
				
			||||||
gguf_writer.add_tensor_data_layout(llm_arch, "Meta AI original pth")
 | 
					gguf_writer.add_tensor_data_layout("Meta AI original pth")
 | 
				
			||||||
gguf_writer.add_context_length(llm_arch, hparams["max_position_embeddings"])
 | 
					gguf_writer.add_context_length(hparams["max_position_embeddings"])
 | 
				
			||||||
gguf_writer.add_embedding_length(llm_arch, hparams["hidden_size"])
 | 
					gguf_writer.add_embedding_length(hparams["hidden_size"])
 | 
				
			||||||
gguf_writer.add_block_count(llm_arch, block_count)
 | 
					gguf_writer.add_block_count(block_count)
 | 
				
			||||||
gguf_writer.add_feed_forward_length(llm_arch, hparams["intermediate_size"])
 | 
					gguf_writer.add_feed_forward_length(hparams["intermediate_size"])
 | 
				
			||||||
gguf_writer.add_rope_dimension_count(llm_arch, hparams["hidden_size"] // hparams["num_attention_heads"])
 | 
					gguf_writer.add_rope_dimension_count(hparams["hidden_size"] // hparams["num_attention_heads"])
 | 
				
			||||||
gguf_writer.add_head_count(llm_arch, head_count)
 | 
					gguf_writer.add_head_count(head_count)
 | 
				
			||||||
gguf_writer.add_head_count_kv(llm_arch, head_count_kv)
 | 
					gguf_writer.add_head_count_kv(head_count_kv)
 | 
				
			||||||
gguf_writer.add_layer_norm_rms_eps(llm_arch, hparams["rms_norm_eps"])
 | 
					gguf_writer.add_layer_norm_rms_eps(hparams["rms_norm_eps"])
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					
 | 
				
			||||||
# TOKENIZATION
 | 
					# TOKENIZATION
 | 
				
			||||||
@@ -129,15 +132,19 @@ if Path(dir_model + "/tokenizer.model").is_file():
 | 
				
			|||||||
        score = tokenizer.get_score(i)
 | 
					        score = tokenizer.get_score(i)
 | 
				
			||||||
 | 
					
 | 
				
			||||||
        toktype = 1  # defualt to normal token type
 | 
					        toktype = 1  # defualt to normal token type
 | 
				
			||||||
        if tokenizer.is_unknown(i): toktype = 2
 | 
					        if tokenizer.is_unknown(i):
 | 
				
			||||||
        if tokenizer.is_control(i): toktype = 3
 | 
					            toktype = 2
 | 
				
			||||||
 | 
					        if tokenizer.is_control(i):
 | 
				
			||||||
 | 
					            toktype = 3
 | 
				
			||||||
 | 
					
 | 
				
			||||||
        # TODO: How to determinate if a token is user defined?
 | 
					        # TODO: How to determinate if a token is user defined?
 | 
				
			||||||
        # ref: https://github.com/google/sentencepiece/blob/master/src/sentencepiece_model.proto
 | 
					        # ref: https://github.com/google/sentencepiece/blob/master/src/sentencepiece_model.proto
 | 
				
			||||||
        # if tokenizer.is_user_defined(i): toktype = 4
 | 
					        # if tokenizer.is_user_defined(i): toktype = 4
 | 
				
			||||||
 | 
					
 | 
				
			||||||
        if tokenizer.is_unused(i):  toktype = 5
 | 
					        if tokenizer.is_unused(i):
 | 
				
			||||||
        if tokenizer.is_byte(i):    toktype = 6
 | 
					            toktype = 5
 | 
				
			||||||
 | 
					        if tokenizer.is_byte(i):
 | 
				
			||||||
 | 
					            toktype = 6
 | 
				
			||||||
 | 
					
 | 
				
			||||||
        tokens.append(text)
 | 
					        tokens.append(text)
 | 
				
			||||||
        scores.append(score)
 | 
					        scores.append(score)
 | 
				
			||||||
@@ -223,6 +230,7 @@ for part_name in part_names:
 | 
				
			|||||||
 | 
					
 | 
				
			||||||
        n_dims = len(data.shape)
 | 
					        n_dims = len(data.shape)
 | 
				
			||||||
        data_dtype = data.dtype
 | 
					        data_dtype = data.dtype
 | 
				
			||||||
 | 
					        old_dtype = data_dtype
 | 
				
			||||||
 | 
					
 | 
				
			||||||
        # if f32 desired, convert any float16 to float32
 | 
					        # if f32 desired, convert any float16 to float32
 | 
				
			||||||
        if ftype == 0 and data.dtype == np.float16:
 | 
					        if ftype == 0 and data.dtype == np.float16:
 | 
				
			||||||
@@ -236,69 +244,19 @@ for part_name in part_names:
 | 
				
			|||||||
        if ftype == 1 and data.dtype == np.float32 and name.endswith(".weight") and n_dims == 2:
 | 
					        if ftype == 1 and data.dtype == np.float32 and name.endswith(".weight") and n_dims == 2:
 | 
				
			||||||
            data_dtype = np.float16
 | 
					            data_dtype = np.float16
 | 
				
			||||||
 | 
					
 | 
				
			||||||
        data_nbytes = data.size * 2 if data_dtype == np.float16 else data.size * 4
 | 
					        print(name + ", n_dims = " + str(n_dims) + ", " + str(old_dtype) + " --> " + str(data_dtype))
 | 
				
			||||||
 | 
					
 | 
				
			||||||
        gguf_writer.add_tensor_info(name, data.shape, data_dtype, data_nbytes)
 | 
					        data = data.astype(data_dtype)
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					        gguf_writer.add_tensor(name, data)
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					
 | 
				
			||||||
print("gguf: write header")
 | 
					print("gguf: write header")
 | 
				
			||||||
gguf_writer.write_header_to_file()
 | 
					gguf_writer.write_header_to_file()
 | 
				
			||||||
print("gguf: write metadata")
 | 
					print("gguf: write metadata")
 | 
				
			||||||
gguf_writer.write_kv_data_to_file()
 | 
					gguf_writer.write_kv_data_to_file()
 | 
				
			||||||
print("gguf: write tensor metadata")
 | 
					print("gguf: write tensors")
 | 
				
			||||||
gguf_writer.write_ti_data_to_file()
 | 
					gguf_writer.write_tensors_to_file()
 | 
				
			||||||
 | 
					 | 
				
			||||||
# tensor data
 | 
					 | 
				
			||||||
print("gguf: convert and write tensor data")
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
part_names = ( f"consolidated.{n:02}.pth" for n in range(0, num_parts) )
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
for part_name in part_names:
 | 
					 | 
				
			||||||
    print("gguf: loading model part '"+ part_name + "'")
 | 
					 | 
				
			||||||
    model_part = torch.load(f"{dir_model}/{part_name}", map_location="cpu")
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    for name in model_part.keys():
 | 
					 | 
				
			||||||
        data = model_part[name]
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
        old_dtype = data.dtype
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
        # we don't need these
 | 
					 | 
				
			||||||
        if name == "rope.freqs":
 | 
					 | 
				
			||||||
            continue
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
        # convert any unsupported data types to float32
 | 
					 | 
				
			||||||
        if data.dtype != torch.float16 and data.dtype != torch.float32:
 | 
					 | 
				
			||||||
            data = data.to(torch.float32)
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
        data = data.squeeze().numpy()
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
        # map tensor names
 | 
					 | 
				
			||||||
        if name.endswith(".weight") and name[:-7] in tensor_map:
 | 
					 | 
				
			||||||
            name = tensor_map[name[:-7]] + ".weight"
 | 
					 | 
				
			||||||
        elif name.endswith(".bias") and name[:-5] in tensor_map:
 | 
					 | 
				
			||||||
            name = tensor_map[name[:-5]] + ".bias"
 | 
					 | 
				
			||||||
        else:
 | 
					 | 
				
			||||||
            print( "Can not map tensor '" + name + "'" )
 | 
					 | 
				
			||||||
            sys.exit()
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
        n_dims = len(data.shape)
 | 
					 | 
				
			||||||
        data_dtype = data.dtype
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
        # if f32 desired, convert any float16 to float32
 | 
					 | 
				
			||||||
        if ftype == 0 and data.dtype == np.float16:
 | 
					 | 
				
			||||||
            data = data.astype(np.float32)
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
        # TODO: Why cant we use these float16 as-is? There should be not reason to store float16 as float32
 | 
					 | 
				
			||||||
        if ftype == 1 and data_dtype == np.float16 and n_dims == 1:
 | 
					 | 
				
			||||||
            data = data.astype(np.float32)
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
        # if f16 desired, convert any float32 2-dim weight tensors to float16
 | 
					 | 
				
			||||||
        if ftype == 1 and data_dtype == np.float32 and name.endswith(".weight") and n_dims == 2:
 | 
					 | 
				
			||||||
            data = data.astype(np.float16)
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
        print( name + ", shape " + str(len(data.shape)) + ", " + str(old_dtype) + " --> " + str(data.dtype))
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
        gguf_writer.write_tensor_data(data)
 | 
					 | 
				
			||||||
 | 
					
 | 
				
			||||||
gguf_writer.close()
 | 
					gguf_writer.close()
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 
 | 
				
			|||||||
		Reference in New Issue
	
	Block a user