metal : improve MUL_MAT_ID (#15541)

* metal : mul_mm_id remove hdst

* metal : remove mul_mm_id hsrc1

* metal : mul_mm_id simplify + add test

* metal : opt mul_mm_id map0

* metal : optimize mul_mm_id id gathering

* metal : mul/div opt

* metal : optimize mul_mm_id_map0

ggml-ci
This commit is contained in:
Georgi Gerganov
2025-08-26 12:46:15 +03:00
committed by GitHub
parent c4e9239064
commit 1d8d83deaa
4 changed files with 180 additions and 228 deletions

View File

@@ -320,40 +320,31 @@ typedef struct {
} ggml_metal_kargs_mul_mv_ext;
typedef struct {
int32_t ne02;
int32_t ne10;
int32_t ne11; // n_expert_used (bcast)
uint64_t nb11;
uint64_t nb12;
int32_t neh11; // n_tokens
uint64_t nbh11;
int32_t ne21; // n_tokens
int32_t ne20; // n_expert_used
uint64_t nb21;
} ggml_metal_kargs_mul_mm_id_map0;
typedef struct {
int32_t ne20; // n_expert_used
int32_t neh0;
int32_t neh1;
uint64_t nbh1;
uint64_t nbh2;
int32_t ne0;
uint64_t nb1;
uint64_t nb2;
} ggml_metal_kargs_mul_mm_id_map1;
typedef struct {
int32_t ne00;
int32_t ne02;
uint64_t nb01;
uint64_t nb02;
uint64_t nb03;
int32_t neh12;
uint64_t nbh10;
uint64_t nbh11;
uint64_t nbh12;
uint64_t nbh13;
int32_t neh0;
int32_t neh1;
int32_t ne11;
uint64_t nb10;
uint64_t nb11;
uint64_t nb12;
uint64_t nb13;
int32_t ne20;
int32_t ne21;
int32_t ne0;
int32_t ne1;
int16_t r2;
int16_t r3;
} ggml_metal_kargs_mul_mm_id;

View File

@@ -398,8 +398,12 @@ enum ggml_metal_kernel_type {
GGML_METAL_KERNEL_TYPE_MUL_MM_IQ1_M_F32,
GGML_METAL_KERNEL_TYPE_MUL_MM_IQ4_NL_F32,
GGML_METAL_KERNEL_TYPE_MUL_MM_IQ4_XS_F32,
GGML_METAL_KERNEL_TYPE_MUL_MM_ID_MAP0_F16,
GGML_METAL_KERNEL_TYPE_MUL_MM_ID_MAP1_F32,
GGML_METAL_KERNEL_TYPE_MUL_MM_ID_MAP0_F16_NE20_1,
GGML_METAL_KERNEL_TYPE_MUL_MM_ID_MAP0_F16_NE20_2,
GGML_METAL_KERNEL_TYPE_MUL_MM_ID_MAP0_F16_NE20_4,
GGML_METAL_KERNEL_TYPE_MUL_MM_ID_MAP0_F16_NE20_6,
GGML_METAL_KERNEL_TYPE_MUL_MM_ID_MAP0_F16_NE20_8,
GGML_METAL_KERNEL_TYPE_MUL_MM_ID_MAP0_F16_NE20_16,
GGML_METAL_KERNEL_TYPE_MUL_MM_ID_F32_F16,
GGML_METAL_KERNEL_TYPE_MUL_MM_ID_F16_F16,
GGML_METAL_KERNEL_TYPE_MUL_MM_ID_BF16_F16,
@@ -1428,8 +1432,12 @@ static struct ggml_backend_metal_context * ggml_metal_init(ggml_backend_dev_t de
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MM_IQ1_M_F32, mul_mm_iq1_m_f32, has_simdgroup_mm);
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MM_IQ4_NL_F32, mul_mm_iq4_nl_f32, has_simdgroup_mm);
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MM_IQ4_XS_F32, mul_mm_iq4_xs_f32, has_simdgroup_mm);
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MM_ID_MAP0_F16, mul_mm_id_map0_f16, has_simdgroup_mm);
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MM_ID_MAP1_F32, mul_mm_id_map1_f32, has_simdgroup_mm);
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MM_ID_MAP0_F16_NE20_1, mul_mm_id_map0_f16_ne20_1, has_simdgroup_mm);
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MM_ID_MAP0_F16_NE20_2, mul_mm_id_map0_f16_ne20_2, has_simdgroup_mm);
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MM_ID_MAP0_F16_NE20_4, mul_mm_id_map0_f16_ne20_4, has_simdgroup_mm);
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MM_ID_MAP0_F16_NE20_6, mul_mm_id_map0_f16_ne20_6, has_simdgroup_mm);
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MM_ID_MAP0_F16_NE20_8, mul_mm_id_map0_f16_ne20_8, has_simdgroup_mm);
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MM_ID_MAP0_F16_NE20_16, mul_mm_id_map0_f16_ne20_16, has_simdgroup_mm);
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MM_ID_F32_F16, mul_mm_id_f32_f16, has_simdgroup_mm);
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MM_ID_F16_F16, mul_mm_id_f16_f16, has_simdgroup_mm);
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MM_ID_BF16_F16, mul_mm_id_bf16_f16, has_simdgroup_mm && use_bfloat);
@@ -3908,38 +3916,6 @@ static int ggml_metal_encode_node(
default: break;
}
const int64_t neh10 = ne10; // n_embd
const int64_t neh11 = ne21; // n_tokens
const int64_t neh12 = ne02; // n_expert
const uint64_t nbh10 = ggml_type_size(GGML_TYPE_F16);
const uint64_t nbh11 = nbh10*neh10;
const uint64_t nbh12 = nbh11*neh11;
const uint64_t nbh13 = nbh12*neh12;
const size_t s_src1 = ggml_type_size(GGML_TYPE_F16)*neh10*neh11*neh12;
id<MTLBuffer> h_src1 = ggml_metal_mem_pool_alloc(mem_pool, s_src1);
if (!h_src1) {
GGML_LOG_ERROR("%s: failed to allocate buffer from memory pool, size = %zu\n", __func__, s_src1);
return 0;
}
const int64_t neh0 = ne0;
const int64_t neh1 = ne21;
const int64_t neh2 = ne02;
const uint64_t nbh0 = ggml_type_size(GGML_TYPE_F32);
const uint64_t nbh1 = nbh0*neh0;
const uint64_t nbh2 = nbh1*neh1;
//const uint64_t nbh3 = nbh2*neh2;
const size_t s_dst = ggml_type_size(GGML_TYPE_F32)*neh0*neh1*neh2;
id<MTLBuffer> h_dst = ggml_metal_mem_pool_alloc(mem_pool, s_dst);
if (!h_dst) {
GGML_LOG_ERROR("%s: failed to allocate buffer from memory pool, size = %zu\n", __func__, s_dst);
return 0;
}
// tokens per expert
const size_t s_tpe = ggml_type_size(GGML_TYPE_I32)*ne02;
id<MTLBuffer> h_tpe = ggml_metal_mem_pool_alloc(mem_pool, s_tpe);
@@ -3949,8 +3925,8 @@ static int ggml_metal_encode_node(
}
// id map
// [n_expert_used, n_tokens]
const size_t s_ids = ggml_type_size(GGML_TYPE_I32)*ne20*ne21;
// [n_tokens, n_expert]
const size_t s_ids = ggml_type_size(GGML_TYPE_I32)*ne21*ne02;
id<MTLBuffer> h_ids = ggml_metal_mem_pool_alloc(mem_pool, s_ids);
if (!h_ids) {
GGML_LOG_ERROR("%s: failed to allocate buffer from memory pool, size = %zu\n", __func__, s_ids);
@@ -3958,32 +3934,45 @@ static int ggml_metal_encode_node(
}
{
const int nth = MIN(1024, ne10/4);
ggml_metal_kargs_mul_mm_id_map0 args = {
ne02,
ne10,
ne11, // n_expert_used (bcast)
ne11, // n_expert_used (bcast)
nb11,
nb12,
neh11, // n_tokens
nbh11,
ne20, // n_expert_used
ne21, // n_tokens
ne20, // n_expert_used
nb21,
};
id<MTLComputePipelineState> pipeline = nil;
pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MM_ID_MAP0_F16].pipeline;
pipeline = nil;
switch (ne20) {
case 1: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MM_ID_MAP0_F16_NE20_1 ].pipeline; break;
case 2: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MM_ID_MAP0_F16_NE20_2 ].pipeline; break;
case 4: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MM_ID_MAP0_F16_NE20_4 ].pipeline; break;
case 6: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MM_ID_MAP0_F16_NE20_6 ].pipeline; break;
case 8: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MM_ID_MAP0_F16_NE20_8 ].pipeline; break;
case 16: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MM_ID_MAP0_F16_NE20_16].pipeline; break;
default: GGML_ABORT("missing specialization for ne20 = %d", (int) ne20);
}
GGML_ASSERT(ne02 <= (int) pipeline.maxTotalThreadsPerThreadgroup);
const size_t smem = ne02*ne20*sizeof(uint16_t);
GGML_ASSERT(smem <= device.maxThreadgroupMemoryLength);
[encoder setComputePipelineState:pipeline];
[encoder setBytes:&args length:sizeof(args) atIndex:0];
[encoder setBuffer:id_src1 offset:offs_src1 atIndex:1];
[encoder setBuffer:id_src2 offset:offs_src2 atIndex:2];
[encoder setBuffer: h_src1 offset:0 atIndex:3];
[encoder setBuffer: h_tpe offset:0 atIndex:4];
[encoder setBuffer: h_ids offset:0 atIndex:5];
[encoder setBuffer:id_src2 offset:offs_src2 atIndex:1];
[encoder setBuffer: h_tpe offset:0 atIndex:2];
[encoder setBuffer: h_ids offset:0 atIndex:3];
[encoder setThreadgroupMemoryLength:smem atIndex:0];
[encoder dispatchThreadgroups:MTLSizeMake(ne02, 1, 1) threadsPerThreadgroup:MTLSizeMake(nth, 1, 1)];
[encoder dispatchThreadgroups:MTLSizeMake(1, 1, 1) threadsPerThreadgroup:MTLSizeMake(ne02, 1, 1)];
}
{
@@ -4022,13 +4011,15 @@ static int ggml_metal_encode_node(
/*.nb01 =*/ nb01,
/*.nb02 =*/ nb02,
/*.nb03 =*/ nb03,
/*.neh12 =*/ neh12,
/*.nbh10 =*/ nbh10,
/*.nbh11 =*/ nbh11,
/*.nbh12 =*/ nbh12,
/*.nbh13 =*/ nbh13,
/*.neh0 =*/ neh0,
/*.neh1 =*/ neh1,
/*.ne11 =*/ ne11, // n_expert_used (bcast)
/*.nb10 =*/ nb10,
/*.nb11 =*/ nb11,
/*.nb12 =*/ nb12,
/*.nb13 =*/ nb13,
/*.ne20 =*/ ne20, // n_expert_used
/*.ne21 =*/ ne21, // n_tokens
/*.ne0 =*/ ne0,
/*.ne1 =*/ ne1,
/*.r2 =*/ r2,
/*.r3 =*/ r3,
};
@@ -4036,42 +4027,14 @@ static int ggml_metal_encode_node(
[encoder setComputePipelineState:pipeline];
[encoder setBytes:&args length:sizeof(args) atIndex:0];
[encoder setBuffer:id_src0 offset:offs_src0 atIndex:1];
[encoder setBuffer: h_src1 offset:0 atIndex:2];
[encoder setBuffer:id_src1 offset:offs_src1 atIndex:2];
[encoder setBuffer: h_tpe offset:0 atIndex:3];
[encoder setBuffer: h_dst offset:0 atIndex:4];
[encoder setBuffer: h_ids offset:0 atIndex:4];
[encoder setBuffer:id_dst offset:offs_dst atIndex:5];
[encoder setThreadgroupMemoryLength:8192 atIndex:0];
[encoder dispatchThreadgroups:MTLSizeMake((ne21 + 31)/32, (ne01 + 63)/64, ne02) threadsPerThreadgroup:MTLSizeMake(128, 1, 1)];
}
{
GGML_ASSERT(ne0 % 4 == 0);
const int nth = MIN(1024, ne0/4);
ggml_metal_kargs_mul_mm_id_map1 args = {
ne20, // n_expert_used
neh0,
neh1,
nbh1,
nbh2,
ne0,
nb1,
nb2,
};
id<MTLComputePipelineState> pipeline = nil;
pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MM_ID_MAP1_F32].pipeline;
[encoder setComputePipelineState:pipeline];
[encoder setBytes:&args length:sizeof(args) atIndex:0];
[encoder setBuffer: h_dst offset:0 atIndex:1];
[encoder setBuffer: h_ids offset:0 atIndex:2];
[encoder setBuffer:id_dst offset:offs_dst atIndex:3];
[encoder dispatchThreadgroups:MTLSizeMake(ne20, ne21, 1) threadsPerThreadgroup:MTLSizeMake(nth, 1, 1)];
}
} else {
id<MTLComputePipelineState> pipeline = nil;

View File

@@ -974,9 +974,16 @@ kernel void kernel_mul(
device const char * src1_ptr = src1 + i13*args.nb13 + i12*args.nb12 + i11*args.nb11 + args.o1[0];
device char * dst_ptr = dst + i03*args.nb3 + i02*args.nb2 + i01*args.nb1 + args.offs;
for (int i0 = tpitg.x; i0 < args.ne0; i0 += ntg.x) {
const int i10 = i0%args.ne10;
*((device float *)(dst_ptr + i0*args.nb0)) = *((device float *)(src0_ptr + i0*args.nb00)) * *((device float *)(src1_ptr + i10*args.nb10));
if (args.ne10 == 1) {
const float x = *((device float *)(src1_ptr));
for (int i0 = tpitg.x; i0 < args.ne0; i0 += ntg.x) {
*((device float *)(dst_ptr + i0*args.nb0)) = *((device float *)(src0_ptr + i0*args.nb00)) * x;
}
} else {
for (int i0 = tpitg.x; i0 < args.ne0; i0 += ntg.x) {
const int i10 = i0%args.ne10;
*((device float *)(dst_ptr + i0*args.nb0)) = *((device float *)(src0_ptr + i0*args.nb00)) * *((device float *)(src1_ptr + i10*args.nb10));
}
}
}
@@ -1000,9 +1007,16 @@ kernel void kernel_div(
device const char * src1_ptr = src1 + i13*args.nb13 + i12*args.nb12 + i11*args.nb11 + args.o1[0];
device char * dst_ptr = dst + i03*args.nb3 + i02*args.nb2 + i01*args.nb1 + args.offs;
for (int i0 = tpitg.x; i0 < args.ne0; i0 += ntg.x) {
const int i10 = i0%args.ne10;
*((device float *)(dst_ptr + i0*args.nb0)) = *((device float *)(src0_ptr + i0*args.nb00)) / *((device float *)(src1_ptr + i10*args.nb10));
if (args.ne10 == 1) {
const float x = 1.0f / *((device float *)(src1_ptr));
for (int i0 = tpitg.x; i0 < args.ne0; i0 += ntg.x) {
*((device float *)(dst_ptr + i0*args.nb0)) = *((device float *)(src0_ptr + i0*args.nb00)) * x;
}
} else {
for (int i0 = tpitg.x; i0 < args.ne0; i0 += ntg.x) {
const int i10 = i0%args.ne10;
*((device float *)(dst_ptr + i0*args.nb0)) = *((device float *)(src0_ptr + i0*args.nb00)) / *((device float *)(src1_ptr + i10*args.nb10));
}
}
}
@@ -7491,97 +7505,81 @@ kernel void kernel_mul_mm(
}
}
template<typename T4>
template<short ne20> // n_expert_used
kernel void kernel_mul_mm_id_map0(
constant ggml_metal_kargs_mul_mm_id_map0 & args,
device const char * src1,
device const char * src2,
device char * hsrc1,
device char * htpe,
device char * hids,
uint3 tgpig[[threadgroup_position_in_grid]],
ushort3 tpitg[[thread_position_in_threadgroup]],
ushort3 ntg[[threads_per_threadgroup]]) {
const int ide = tgpig[0]; // expert id
threadgroup char * shmem [[threadgroup(0)]],
ushort tpitg[[thread_position_in_threadgroup]],
ushort ntg[[threads_per_threadgroup]]) {
const short ide = tpitg; // expert id
int n_all = 0;
uint32_t n_all = 0;
device int32_t * ids_i32 = (device int32_t *) (hids);
device int32_t * ids_i32 = (device int32_t *) hids + ide*args.ne21;
for (int i21 = 0; i21 < args.neh11; i21++) { // n_tokens
device const int32_t * src2_i32 = (device const int32_t *) (src2 + i21*args.nb21);
for (int i21 = 0; i21 < args.ne21; i21 += ntg) { // n_tokens
if (i21 + tpitg < args.ne21) {
device const int32_t * src2_i32 = (device const int32_t *) (src2 + (i21 + tpitg)*args.nb21);
for (int i20 = 0; i20 < args.ne20; i20++) { // n_expert_used
if (src2_i32[i20] != ide) {
continue;
threadgroup uint16_t * sids = (threadgroup uint16_t *) shmem + tpitg*ne20;
#pragma unroll(ne20)
for (short i20 = 0; i20 < ne20; i20++) {
sids[i20] = src2_i32[i20];
}
device const float4 * src1_f32x4 = (device const float4 *) ( src1 + i21*args.nb12 + (i20%args.ne11)*args.nb11);
device T4 * hsrc1_f32x4 = (device T4 *) (hsrc1 + (ide*args.neh11 + n_all)*args.nbh11);
for (int64_t i00 = tpitg.x; i00 < args.ne10/4; i00 += ntg.x) {
hsrc1_f32x4[i00] = (T4) (src1_f32x4[i00]);
}
if (tpitg.x == 0) {
ids_i32[i21*args.ne20 + i20] = ide*args.neh11 + n_all;
}
++n_all;
}
threadgroup_barrier(mem_flags::mem_threadgroup);
for (short t = 0; t < ntg; t++) {
if (i21 + t >= args.ne21) {
break;
}
threadgroup const uint16_t * sids = (threadgroup const uint16_t *) shmem + t*ne20;
short sel = 0;
#pragma unroll(ne20)
for (short i20 = 0; i20 < ne20; i20++) {
sel += (sids[i20] == ide)*(i20 + 1);
}
ids_i32[n_all] = (i21 + t)*ne20 + sel - 1;
n_all += sel > 0;
}
threadgroup_barrier(mem_flags::mem_threadgroup);
}
if (tpitg.x == 0) {
device int32_t * tpe_i32 = (device int32_t *) (htpe);
tpe_i32[ide] = n_all;
}
device uint32_t * tpe_u32 = (device uint32_t *) (htpe);
tpe_u32[ide] = n_all;
}
typedef decltype(kernel_mul_mm_id_map0<half4>) kernel_mul_mm_id_map0_t;
typedef decltype(kernel_mul_mm_id_map0<1>) kernel_mul_mm_id_map0_t;
template [[host_name("kernel_mul_mm_id_map0_f16")]] kernel kernel_mul_mm_id_map0_t kernel_mul_mm_id_map0<half4>;
template<typename T>
kernel void kernel_mul_mm_id_map1(
constant ggml_metal_kargs_mul_mm_id_map1 & args,
device const char * hdst,
device const char * hids,
device char * dst,
uint3 tgpig[[threadgroup_position_in_grid]],
ushort3 tpitg[[thread_position_in_threadgroup]],
ushort3 ntg[[threads_per_threadgroup]]) {
const int i20 = tgpig[0]; // used expert
const int i21 = tgpig[1]; // token
device const int32_t * ids_i32 = (device const int32_t *) (hids);
device float4 * dst_f32x4 = (device float4 *) (dst + i20*args.nb1 + i21*args.nb2);
const int id = ids_i32[i21*args.ne20 + i20];
const int ide = id / args.neh1;
const int idt = id % args.neh1;
device const float4 * hdst_f32x4 = (device const float4 *) (hdst + idt*args.nbh1 + ide*args.nbh2);
for (int64_t i0 = tpitg.x; i0 < args.neh0/4; i0 += ntg.x) {
dst_f32x4[i0] = hdst_f32x4[i0];
}
}
typedef decltype(kernel_mul_mm_id_map1<float>) kernel_mul_mm_id_map1_t;
template [[host_name("kernel_mul_mm_id_map1_f32")]] kernel kernel_mul_mm_id_map1_t kernel_mul_mm_id_map1<float>;
template [[host_name("kernel_mul_mm_id_map0_f16_ne20_1" )]] kernel kernel_mul_mm_id_map0_t kernel_mul_mm_id_map0<1>;
template [[host_name("kernel_mul_mm_id_map0_f16_ne20_2" )]] kernel kernel_mul_mm_id_map0_t kernel_mul_mm_id_map0<2>;
template [[host_name("kernel_mul_mm_id_map0_f16_ne20_4" )]] kernel kernel_mul_mm_id_map0_t kernel_mul_mm_id_map0<4>;
template [[host_name("kernel_mul_mm_id_map0_f16_ne20_6" )]] kernel kernel_mul_mm_id_map0_t kernel_mul_mm_id_map0<6>;
template [[host_name("kernel_mul_mm_id_map0_f16_ne20_8" )]] kernel kernel_mul_mm_id_map0_t kernel_mul_mm_id_map0<8>;
template [[host_name("kernel_mul_mm_id_map0_f16_ne20_16")]] kernel kernel_mul_mm_id_map0_t kernel_mul_mm_id_map0<16>;
template<typename T, typename T4x4, typename simdgroup_T8x8, typename block_q, short nl, void (*dequantize_func)(device const block_q *, short, thread T4x4 &)>
kernel void kernel_mul_mm_id(
constant ggml_metal_kargs_mul_mm_id & args,
device const char * src0,
device const char * src1,
device const char * tpe,
device const char * htpe,
device const char * hids,
device char * dst,
threadgroup char * shmem [[threadgroup(0)]],
uint3 tgpig[[threadgroup_position_in_grid]],
ushort tiitg[[thread_index_in_threadgroup]],
ushort tiisg[[thread_index_in_simdgroup]],
ushort sgitg[[simdgroup_index_in_threadgroup]]) {
threadgroup T * sa = (threadgroup T *)(shmem);
@@ -7589,19 +7587,20 @@ kernel void kernel_mul_mm_id(
const int r0 = tgpig.y;
const int r1 = tgpig.x;
const int im = tgpig.z;
const int im = tgpig.z; // expert
device const int32_t * tpe_i32 = (device const int32_t *) (tpe);
device const uint32_t * tpe_u32 = (device const uint32_t *) (htpe);
device const int32_t * ids_i32 = (device const int32_t *) (hids);
const int neh1 = tpe_i32[im];
const int32_t neh1 = tpe_u32[im];
if (r1*BLOCK_SIZE_N >= neh1) {
return;
}
// if this block is of 64x32 shape or smaller
const short n_rows = (args.neh0 - r0*BLOCK_SIZE_M < BLOCK_SIZE_M) ? (args.neh0 - r0*BLOCK_SIZE_M) : BLOCK_SIZE_M;
const short n_cols = ( neh1 - r1*BLOCK_SIZE_N < BLOCK_SIZE_N) ? ( neh1 - r1*BLOCK_SIZE_N) : BLOCK_SIZE_N;
const short n_rows = (args.ne0 - r0*BLOCK_SIZE_M < BLOCK_SIZE_M) ? (args.ne0 - r0*BLOCK_SIZE_M) : BLOCK_SIZE_M;
const short n_cols = ( neh1 - r1*BLOCK_SIZE_N < BLOCK_SIZE_N) ? ( neh1 - r1*BLOCK_SIZE_N) : BLOCK_SIZE_N;
// a thread shouldn't load data outside of the matrix
const short thread_row = ((short)tiitg/THREAD_PER_ROW) < n_rows ? ((short)tiitg/THREAD_PER_ROW) : n_rows - 1;
@@ -7617,20 +7616,23 @@ kernel void kernel_mul_mm_id(
short il = (tiitg % THREAD_PER_ROW);
const int i12 = im%args.neh12;
const int i13 = im/args.neh12;
const int id = ids_i32[im*args.ne21 + r1*BLOCK_SIZE_N + thread_col];
const uint64_t offset0 = (i12/args.r2)*args.nb02 + (i13/args.r3)*args.nb03;
const short i11 = (id % args.ne20) % args.ne11;
const short i12 = (id / args.ne20);
const short i13 = 0;
const uint64_t offset0 = im*args.nb02 + i13*args.nb03;
const short offset1 = il/nl;
device const block_q * x = (device const block_q *)(src0
+ args.nb01*(r0*BLOCK_SIZE_M + thread_row) + offset0) + offset1;
device const half * y = (device const half *)(src1
+ args.nbh13*i13
+ args.nbh12*i12
+ args.nbh11*(r1*BLOCK_SIZE_N + thread_col)
+ args.nbh10*(BLOCK_SIZE_K / THREAD_PER_COL * (tiitg % THREAD_PER_COL)));
device const float * y = (device const float *)(src1
+ args.nb13*i13
+ args.nb12*i12
+ args.nb11*i11
+ args.nb10*(BLOCK_SIZE_K / THREAD_PER_COL * (tiitg % THREAD_PER_COL)));
for (int loop_k = 0; loop_k < args.ne00; loop_k += BLOCK_SIZE_K) {
// load data and store to threadgroup memory
@@ -7646,7 +7648,7 @@ kernel void kernel_mul_mm_id(
+ (tiitg/THREAD_PER_ROW)%8 + (i&7)*8) = temp_a[i/4][i%4];
}
*(threadgroup half2x4 *)(sb + 32*8*(tiitg%THREAD_PER_COL) + 8*(tiitg/THREAD_PER_COL)) = *((device half2x4 *) y);
*(threadgroup half2x4 *)(sb + 32*8*(tiitg%THREAD_PER_COL) + 8*(tiitg/THREAD_PER_COL)) = (half2x4)(*((device float2x4 *) y));
il = (il + 2 < nl) ? il + 2 : il % 2;
x = (il < 2) ? x + (2 + nl - 1)/nl : x;
@@ -7682,43 +7684,38 @@ kernel void kernel_mul_mm_id(
}
}
if ((r0 + 1) * BLOCK_SIZE_M <= args.neh0 && (r1 + 1) * BLOCK_SIZE_N <= neh1) {
device float * C = (device float *) dst +
(BLOCK_SIZE_M * r0 + 32*(sgitg & 1)) + \
(BLOCK_SIZE_N * r1 + 16*(sgitg >> 1)) * args.neh0 + im*args.neh1*args.neh0;
threadgroup_barrier(mem_flags::mem_threadgroup);
for (short i = 0; i < 8; i++) {
simdgroup_store(mc[i], C + 8 * (i%4) + 8 * args.neh0 * (i/4), args.neh0);
}
} else {
// block is smaller than 64x32, we should avoid writing data outside of the matrix
threadgroup_barrier(mem_flags::mem_threadgroup);
threadgroup float * temp_str = ((threadgroup float *) shmem) \
+ 32*(sgitg&1) + (16*(sgitg >> 1))*BLOCK_SIZE_M;
for (short i = 0; i < 8; i++) {
simdgroup_store(mc[i], temp_str + 8*(i%4) + 8*BLOCK_SIZE_M*(i/4), BLOCK_SIZE_M);
threadgroup float * temp_str = ((threadgroup float *) shmem) \
+ 32*(sgitg&1) + (16*(sgitg >> 1))*BLOCK_SIZE_M;
#pragma unroll(8)
for (short i = 0; i < 8; i++) {
simdgroup_store(mc[i], temp_str + 8*(i%4) + 8*BLOCK_SIZE_M*(i/4), BLOCK_SIZE_M);
}
threadgroup_barrier(mem_flags::mem_threadgroup);
for (short j = sgitg; j < n_cols; j += 4) {
const int id = ids_i32[im*args.ne21 + r1*BLOCK_SIZE_N + j];
const short ide = id % args.ne20;
const short idt = id / args.ne20;
device float * D = (device float *) dst + (r0*BLOCK_SIZE_M) + ide*args.ne0 + idt*args.ne1*args.ne0;
device float4 * D4 = (device float4 *) D;
threadgroup float * C = (threadgroup float *) shmem + (j*BLOCK_SIZE_M);
threadgroup float4 * C4 = (threadgroup float4 *) C;
int i = tiisg;
for (; i < n_rows/4; i += 32) {
*(D4 + i) = *(C4 + i);
}
threadgroup_barrier(mem_flags::mem_threadgroup);
if (sgitg == 0) {
for (int j = tiitg; j < n_cols; j += BLOCK_SIZE_N) {
device float * D = (device float *) dst + (r0*BLOCK_SIZE_M) + (r1*BLOCK_SIZE_N + j)*args.neh0 + im*args.neh1*args.neh0;
device float4 * D4 = (device float4 *) D;
threadgroup float * C = temp_str + (j*BLOCK_SIZE_M);
threadgroup float4 * C4 = (threadgroup float4 *) C;
int i = 0;
for (; i < n_rows/4; i++) {
*(D4 + i) = *(C4 + i);
}
i *= 4;
for (; i < n_rows; i++) {
*(D + i) = *(C + i);
}
}
i = (4*(n_rows/4)) + tiisg;
for (; i < n_rows; i += 32) {
*(D + i) = *(C + i);
}
}
}