tests : add -INF blocks to the KQ mask in the FA tests (#16380)

* tests : add -INF blocks to the KQ mask in the FA tests

* cont : bump -INF block size to 64

Co-authored-by: Jeff Bolz <jbolz@nvidia.com>

* ggml : prevent division by zero in FA CPU op

---------

Co-authored-by: Jeff Bolz <jbolz@nvidia.com>
This commit is contained in:
Georgi Gerganov
2025-10-07 08:22:35 +03:00
committed by GitHub
parent 8ae32dc9ec
commit 1d6092fc72
2 changed files with 47 additions and 1 deletions

View File

@@ -131,6 +131,50 @@ static void init_tensor_uniform(ggml_tensor * tensor, float min = -1.0f, float m
}
}
// generate an F16 mask where certain blocks are randomly masked with -INF value
static void init_tensor_kq_mask(ggml_tensor * tensor, float min = -1.0f, float max = 1.0f) {
GGML_ASSERT(tensor->type == GGML_TYPE_F16);
GGML_TENSOR_LOCALS( int32_t, ne, tensor, ne);
std::vector<float> data_f32(ne0*ne1*ne2*ne3);
std::vector<ggml_fp16_t> data_f16(ne0*ne1*ne2*ne3);
std::random_device rd;
std::mt19937 gen(rd());
std::uniform_real_distribution<float> dis(min, max);
for (size_t i = 0; i < data_f32.size(); i++) {
data_f32[i] = dis(gen);
}
// block size
const int blck0 = 128;
const int blck1 = 64;
// number of INF blocks
const int n_inf_blocks = 0.1*(ne0*ne1*ne2*ne3)/(blck0*blck1);
for (int b = 0; b < n_inf_blocks; b++) {
const int p3 = (rd() % ne3);
const int p2 = (rd() % ne2);
const int p1 = (rd() % ne1);
const int p0 = (rd() % ne0);
for (int i1 = 0; i1 < blck1 && p1 + i1 < ne1; i1++) {
const int idx = p3*ne2*ne1*ne0 + p2*ne1*ne0 + (p1 + i1)*ne0 + p0;
for (int i0 = 0; i0 < blck0 && p0 + i0 < ne0; i0++) {
data_f32[idx + i0] = -INFINITY;
}
}
}
ggml_fp32_to_fp16_row(data_f32.data(), data_f16.data(), ne0*ne1*ne2*ne3);
ggml_backend_tensor_set(tensor, data_f16.data(), 0, data_f16.size()*sizeof(ggml_fp16_t));
}
static std::vector<float> tensor_to_float(const ggml_tensor * t) {
std::vector<float> tv;
tv.reserve(ggml_nelements(t));
@@ -5111,6 +5155,8 @@ struct test_flash_attn_ext : public test_case {
if (strcmp(t->name, "s") == 0) {
// make the sink values more noticable in order to trigger a test failure when the implementation is wrong
init_tensor_uniform(t, -10.0f, 10.0f);
} else if (strcmp(t->name, "m") == 0) {
init_tensor_kq_mask(t);
} else {
init_tensor_uniform(t);
}