mirror of
				https://github.com/ggml-org/llama.cpp.git
				synced 2025-10-30 08:42:00 +00:00 
			
		
		
		
	llama : move end-user examples to tools directory (#13249)
* llama : move end-user examples to tools directory --------- Co-authored-by: Xuan Son Nguyen <son@huggingface.co>
This commit is contained in:
		
							
								
								
									
										814
									
								
								tools/llava/minicpmv-convert-image-encoder-to-gguf.py
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										814
									
								
								tools/llava/minicpmv-convert-image-encoder-to-gguf.py
									
									
									
									
									
										Normal file
									
								
							| @@ -0,0 +1,814 @@ | ||||
| # coding=utf-8 | ||||
| # Copyright 2024 Google AI and The HuggingFace Team. All rights reserved. | ||||
| # | ||||
| # Licensed under the Apache License, Version 2.0 (the "License"); | ||||
| # you may not use this file except in compliance with the License. | ||||
| # You may obtain a copy of the License at | ||||
| # | ||||
| #     http://www.apache.org/licenses/LICENSE-2.0 | ||||
| # | ||||
| # Unless required by applicable law or agreed to in writing, software | ||||
| # distributed under the License is distributed on an "AS IS" BASIS, | ||||
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | ||||
| # See the License for the specific language governing permissions and | ||||
| # limitations under the License. | ||||
| """ PyTorch Siglip model. """ | ||||
| # Copied from  HuggingFaceM4/siglip-so400m-14-980-flash-attn2-navit and add tgt_sizes | ||||
|  | ||||
|  | ||||
| import os | ||||
| import math | ||||
| import warnings | ||||
|  | ||||
| import numpy as np | ||||
| import torch | ||||
| import torch.nn.functional as F | ||||
| import torch.utils.checkpoint | ||||
| from torch import nn | ||||
| from torch.nn.init import _calculate_fan_in_and_fan_out | ||||
|  | ||||
| from transformers.activations import ACT2FN | ||||
| from transformers.modeling_utils import PreTrainedModel | ||||
| from transformers.configuration_utils import PretrainedConfig | ||||
| from transformers.utils import ( | ||||
|     logging, | ||||
| ) | ||||
| from transformers.utils import logging | ||||
|  | ||||
| logger = logging.get_logger(__name__) | ||||
|  | ||||
| class SiglipVisionConfig(PretrainedConfig): | ||||
|     r""" | ||||
|     This is the configuration class to store the configuration of a [`SiglipVisionModel`]. It is used to instantiate a | ||||
|     Siglip vision encoder according to the specified arguments, defining the model architecture. Instantiating a | ||||
|     configuration with the defaults will yield a similar configuration to that of the vision encoder of the Siglip | ||||
|     [google/siglip-base-patch16-224](https://huggingface.co/google/siglip-base-patch16-224) architecture. | ||||
|     Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the | ||||
|     documentation from [`PretrainedConfig`] for more information. | ||||
|     Args: | ||||
|         hidden_size (`int`, *optional*, defaults to 768): | ||||
|             Dimensionality of the encoder layers and the pooler layer. | ||||
|         intermediate_size (`int`, *optional*, defaults to 3072): | ||||
|             Dimensionality of the "intermediate" (i.e., feed-forward) layer in the Transformer encoder. | ||||
|         num_hidden_layers (`int`, *optional*, defaults to 12): | ||||
|             Number of hidden layers in the Transformer encoder. | ||||
|         num_attention_heads (`int`, *optional*, defaults to 12): | ||||
|             Number of attention heads for each attention layer in the Transformer encoder. | ||||
|         num_channels (`int`, *optional*, defaults to 3): | ||||
|             Number of channels in the input images. | ||||
|         image_size (`int`, *optional*, defaults to 224): | ||||
|             The size (resolution) of each image. | ||||
|         patch_size (`int`, *optional*, defaults to 16): | ||||
|             The size (resolution) of each patch. | ||||
|         hidden_act (`str` or `function`, *optional*, defaults to `"gelu_pytorch_tanh"`): | ||||
|             The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`, | ||||
|             `"relu"`, `"selu"` and `"gelu_new"` ``"quick_gelu"` are supported. | ||||
|         layer_norm_eps (`float`, *optional*, defaults to 1e-06): | ||||
|             The epsilon used by the layer normalization layers. | ||||
|         attention_dropout (`float`, *optional*, defaults to 0.0): | ||||
|             The dropout ratio for the attention probabilities. | ||||
|     Example: | ||||
|     ```python | ||||
|     >>> from transformers import SiglipVisionConfig, SiglipVisionModel | ||||
|     >>> # Initializing a SiglipVisionConfig with google/siglip-base-patch16-224 style configuration | ||||
|     >>> configuration = SiglipVisionConfig() | ||||
|     >>> # Initializing a SiglipVisionModel (with random weights) from the google/siglip-base-patch16-224 style configuration | ||||
|     >>> model = SiglipVisionModel(configuration) | ||||
|     >>> # Accessing the model configuration | ||||
|     >>> configuration = model.config | ||||
|     ```""" | ||||
|  | ||||
|     model_type = "siglip_vision_model" | ||||
|  | ||||
|     def __init__( | ||||
|         self, | ||||
|         hidden_size=768, | ||||
|         intermediate_size=3072, | ||||
|         num_hidden_layers=12, | ||||
|         num_attention_heads=12, | ||||
|         num_channels=3, | ||||
|         image_size=224, | ||||
|         patch_size=16, | ||||
|         hidden_act="gelu_pytorch_tanh", | ||||
|         layer_norm_eps=1e-6, | ||||
|         attention_dropout=0.0, | ||||
|         **kwargs, | ||||
|     ): | ||||
|         super().__init__(**kwargs) | ||||
|  | ||||
|         self.hidden_size = hidden_size | ||||
|         self.intermediate_size = intermediate_size | ||||
|         self.num_hidden_layers = num_hidden_layers | ||||
|         self.num_attention_heads = num_attention_heads | ||||
|         self.num_channels = num_channels | ||||
|         self.patch_size = patch_size | ||||
|         self.image_size = image_size | ||||
|         self.attention_dropout = attention_dropout | ||||
|         self.layer_norm_eps = layer_norm_eps | ||||
|         self.hidden_act = hidden_act | ||||
|  | ||||
| _CHECKPOINT_FOR_DOC = "google/siglip-base-patch16-224" | ||||
|  | ||||
| SIGLIP_PRETRAINED_MODEL_ARCHIVE_LIST = [ | ||||
|     "google/siglip-base-patch16-224", | ||||
|     # See all SigLIP models at https://huggingface.co/models?filter=siglip | ||||
| ] | ||||
|  | ||||
| # Copied from transformers.models.llama.modeling_llama._get_unpad_data | ||||
| def _get_unpad_data(attention_mask): | ||||
|     seqlens_in_batch = attention_mask.sum(dim=-1, dtype=torch.int32) | ||||
|     indices = torch.nonzero(attention_mask.flatten(), as_tuple=False).flatten() | ||||
|     max_seqlen_in_batch = seqlens_in_batch.max().item() | ||||
|     cu_seqlens = F.pad(torch.cumsum(seqlens_in_batch, dim=0, dtype=torch.int32), (1, 0)) | ||||
|     return ( | ||||
|         indices, | ||||
|         cu_seqlens, | ||||
|         max_seqlen_in_batch, | ||||
|     ) | ||||
|  | ||||
|  | ||||
| def _trunc_normal_(tensor, mean, std, a, b): | ||||
|     # Cut & paste from PyTorch official master until it's in a few official releases - RW | ||||
|     # Method based on https://people.sc.fsu.edu/~jburkardt/presentations/truncated_normal.pdf | ||||
|     def norm_cdf(x): | ||||
|         # Computes standard normal cumulative distribution function | ||||
|         return (1.0 + math.erf(x / math.sqrt(2.0))) / 2.0 | ||||
|  | ||||
|     if (mean < a - 2 * std) or (mean > b + 2 * std): | ||||
|         warnings.warn( | ||||
|             "mean is more than 2 std from [a, b] in nn.init.trunc_normal_. " | ||||
|             "The distribution of values may be incorrect.", | ||||
|             stacklevel=2, | ||||
|         ) | ||||
|  | ||||
|     # Values are generated by using a truncated uniform distribution and | ||||
|     # then using the inverse CDF for the normal distribution. | ||||
|     # Get upper and lower cdf values | ||||
|     l = norm_cdf((a - mean) / std) | ||||
|     u = norm_cdf((b - mean) / std) | ||||
|  | ||||
|     # Uniformly fill tensor with values from [l, u], then translate to | ||||
|     # [2l-1, 2u-1]. | ||||
|     tensor.uniform_(2 * l - 1, 2 * u - 1) | ||||
|  | ||||
|     # Use inverse cdf transform for normal distribution to get truncated | ||||
|     # standard normal | ||||
|     if tensor.dtype in [torch.float16, torch.bfloat16]: | ||||
|         # The `erfinv_` op is not (yet?) defined in float16+cpu, bfloat16+gpu | ||||
|         og_dtype = tensor.dtype | ||||
|         tensor = tensor.to(torch.float32) | ||||
|         tensor.erfinv_() | ||||
|         tensor = tensor.to(og_dtype) | ||||
|     else: | ||||
|         tensor.erfinv_() | ||||
|  | ||||
|     # Transform to proper mean, std | ||||
|     tensor.mul_(std * math.sqrt(2.0)) | ||||
|     tensor.add_(mean) | ||||
|  | ||||
|     # Clamp to ensure it's in the proper range | ||||
|     if tensor.dtype == torch.float16: | ||||
|         # The `clamp_` op is not (yet?) defined in float16+cpu | ||||
|         tensor = tensor.to(torch.float32) | ||||
|         tensor.clamp_(min=a, max=b) | ||||
|         tensor = tensor.to(torch.float16) | ||||
|     else: | ||||
|         tensor.clamp_(min=a, max=b) | ||||
|  | ||||
|  | ||||
| def trunc_normal_tf_( | ||||
|     tensor: torch.Tensor, mean: float = 0.0, std: float = 1.0, a: float = -2.0, b: float = 2.0 | ||||
| ): | ||||
|     """Fills the input Tensor with values drawn from a truncated | ||||
|     normal distribution. The values are effectively drawn from the | ||||
|     normal distribution :math:`\\mathcal{N}(\text{mean}, \text{std}^2)` | ||||
|     with values outside :math:`[a, b]` redrawn until they are within | ||||
|     the bounds. The method used for generating the random values works | ||||
|     best when :math:`a \\leq \text{mean} \\leq b`. | ||||
|     NOTE: this 'tf' variant behaves closer to Tensorflow / JAX impl where the | ||||
|     bounds [a, b] are applied when sampling the normal distribution with mean=0, std=1.0 | ||||
|     and the result is subsquently scaled and shifted by the mean and std args. | ||||
|     Args: | ||||
|         tensor: an n-dimensional `torch.Tensor` | ||||
|         mean: the mean of the normal distribution | ||||
|         std: the standard deviation of the normal distribution | ||||
|         a: the minimum cutoff value | ||||
|         b: the maximum cutoff value | ||||
|     """ | ||||
|     with torch.no_grad(): | ||||
|         _trunc_normal_(tensor, 0, 1.0, a, b) | ||||
|         tensor.mul_(std).add_(mean) | ||||
|  | ||||
|  | ||||
| def variance_scaling_(tensor, scale=1.0, mode="fan_in", distribution="normal"): | ||||
|     fan_in, fan_out = _calculate_fan_in_and_fan_out(tensor) | ||||
|     denom = fan_in | ||||
|     if mode == "fan_in": | ||||
|         denom = fan_in | ||||
|     elif mode == "fan_out": | ||||
|         denom = fan_out | ||||
|     elif mode == "fan_avg": | ||||
|         denom = (fan_in + fan_out) / 2 | ||||
|  | ||||
|     variance = scale / denom | ||||
|  | ||||
|     if distribution == "truncated_normal": | ||||
|         # constant is stddev of standard normal truncated to (-2, 2) | ||||
|         trunc_normal_tf_(tensor, std=math.sqrt(variance) / 0.87962566103423978) | ||||
|     elif distribution == "normal": | ||||
|         with torch.no_grad(): | ||||
|             tensor.normal_(std=math.sqrt(variance)) | ||||
|     elif distribution == "uniform": | ||||
|         bound = math.sqrt(3 * variance) | ||||
|         with torch.no_grad(): | ||||
|             tensor.uniform_(-bound, bound) | ||||
|     else: | ||||
|         raise ValueError(f"invalid distribution {distribution}") | ||||
|  | ||||
|  | ||||
| def lecun_normal_(tensor): | ||||
|     variance_scaling_(tensor, mode="fan_in", distribution="truncated_normal") | ||||
|  | ||||
|  | ||||
| def default_flax_embed_init(tensor): | ||||
|     variance_scaling_(tensor, mode="fan_in", distribution="normal") | ||||
|  | ||||
| class SiglipVisionEmbeddings(nn.Module): | ||||
|     def __init__(self, config: SiglipVisionConfig): | ||||
|         super().__init__() | ||||
|         self.config = config | ||||
|         self.embed_dim = config.hidden_size | ||||
|         self.image_size = config.image_size | ||||
|         self.patch_size = config.patch_size | ||||
|  | ||||
|         self.patch_embedding = nn.Conv2d( | ||||
|             in_channels=config.num_channels, | ||||
|             out_channels=self.embed_dim, | ||||
|             kernel_size=self.patch_size, | ||||
|             stride=self.patch_size, | ||||
|             padding="valid", | ||||
|         ) | ||||
|  | ||||
|         self.num_patches_per_side = self.image_size // self.patch_size | ||||
|         self.num_patches = self.num_patches_per_side**2 | ||||
|         self.num_positions = self.num_patches | ||||
|         self.position_embedding = nn.Embedding(self.num_positions, self.embed_dim) | ||||
|  | ||||
| class SiglipAttention(nn.Module): | ||||
|     """Multi-headed attention from 'Attention Is All You Need' paper""" | ||||
|  | ||||
|     # Copied from transformers.models.clip.modeling_clip.CLIPAttention.__init__ | ||||
|     def __init__(self, config): | ||||
|         super().__init__() | ||||
|         self.config = config | ||||
|         self.embed_dim = config.hidden_size | ||||
|         self.num_heads = config.num_attention_heads | ||||
|         self.head_dim = self.embed_dim // self.num_heads | ||||
|         if self.head_dim * self.num_heads != self.embed_dim: | ||||
|             raise ValueError( | ||||
|                 f"embed_dim must be divisible by num_heads (got `embed_dim`: {self.embed_dim} and `num_heads`:" | ||||
|                 f" {self.num_heads})." | ||||
|             ) | ||||
|         self.scale = self.head_dim**-0.5 | ||||
|         self.dropout = config.attention_dropout | ||||
|  | ||||
|         self.k_proj = nn.Linear(self.embed_dim, self.embed_dim) | ||||
|         self.v_proj = nn.Linear(self.embed_dim, self.embed_dim) | ||||
|         self.q_proj = nn.Linear(self.embed_dim, self.embed_dim) | ||||
|         self.out_proj = nn.Linear(self.embed_dim, self.embed_dim) | ||||
|  | ||||
| # Copied from transformers.models.clip.modeling_clip.CLIPMLP with CLIP->Siglip | ||||
| class SiglipMLP(nn.Module): | ||||
|     def __init__(self, config): | ||||
|         super().__init__() | ||||
|         self.config = config | ||||
|         self.activation_fn = ACT2FN[config.hidden_act] | ||||
|         self.fc1 = nn.Linear(config.hidden_size, config.intermediate_size) | ||||
|         self.fc2 = nn.Linear(config.intermediate_size, config.hidden_size) | ||||
|  | ||||
|  | ||||
| # Copied from transformers.models.clip.modeling_clip.CLIPEncoderLayer with CLIP->Siglip | ||||
| class SiglipEncoderLayer(nn.Module): | ||||
|     def __init__(self, config: SiglipVisionConfig): | ||||
|         super().__init__() | ||||
|         self.embed_dim = config.hidden_size | ||||
|         self._use_flash_attention_2 = config._attn_implementation == "flash_attention_2" | ||||
|         self.self_attn = ( | ||||
|             SiglipAttention(config) | ||||
|         ) | ||||
|         self.layer_norm1 = nn.LayerNorm(self.embed_dim, eps=config.layer_norm_eps) | ||||
|         self.mlp = SiglipMLP(config) | ||||
|         self.layer_norm2 = nn.LayerNorm(self.embed_dim, eps=config.layer_norm_eps) | ||||
|  | ||||
| class SiglipPreTrainedModel(PreTrainedModel): | ||||
|     """ | ||||
|     An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained | ||||
|     models. | ||||
|     """ | ||||
|  | ||||
|     config_class = SiglipVisionConfig | ||||
|     base_model_prefix = "siglip" | ||||
|     supports_gradient_checkpointing = True | ||||
|  | ||||
|     def _init_weights(self, module): | ||||
|         """Initialize the weights""" | ||||
|  | ||||
|         if isinstance(module, SiglipVisionEmbeddings): | ||||
|             width = self.config.hidden_size | ||||
|             nn.init.normal_(module.position_embedding.weight, std=1 / np.sqrt(width)) | ||||
|         elif isinstance(module, nn.Embedding): | ||||
|             default_flax_embed_init(module.weight) | ||||
|         elif isinstance(module, SiglipAttention): | ||||
|             nn.init.normal_(module.q_proj.weight) | ||||
|             nn.init.normal_(module.k_proj.weight) | ||||
|             nn.init.normal_(module.v_proj.weight) | ||||
|             nn.init.normal_(module.out_proj.weight) | ||||
|             nn.init.zeros_(module.q_proj.bias) | ||||
|             nn.init.zeros_(module.k_proj.bias) | ||||
|             nn.init.zeros_(module.v_proj.bias) | ||||
|             nn.init.zeros_(module.out_proj.bias) | ||||
|         elif isinstance(module, SiglipMLP): | ||||
|             nn.init.normal_(module.fc1.weight) | ||||
|             nn.init.normal_(module.fc2.weight) | ||||
|             nn.init.normal_(module.fc1.bias, std=1e-6) | ||||
|             nn.init.normal_(module.fc2.bias, std=1e-6) | ||||
|         elif isinstance(module, (nn.Linear, nn.Conv2d)): | ||||
|             lecun_normal_(module.weight) | ||||
|             if module.bias is not None: | ||||
|                 nn.init.zeros_(module.bias) | ||||
|         elif isinstance(module, nn.LayerNorm): | ||||
|             module.bias.data.zero_() | ||||
|             module.weight.data.fill_(1.0) | ||||
|  | ||||
|  | ||||
| SIGLIP_START_DOCSTRING = r""" | ||||
|     This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the | ||||
|     library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads | ||||
|     etc.) | ||||
|     This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. | ||||
|     Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage | ||||
|     and behavior. | ||||
|     Parameters: | ||||
|         config ([`SiglipVisionConfig`]): Model configuration class with all the parameters of the model. | ||||
|             Initializing with a config file does not load the weights associated with the model, only the | ||||
|             configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights. | ||||
| """ | ||||
|  | ||||
|  | ||||
| SIGLIP_VISION_INPUTS_DOCSTRING = r""" | ||||
|     Args: | ||||
|         pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`): | ||||
|             Pixel values. Padding will be ignored by default should you provide it. Pixel values can be obtained using | ||||
|             [`AutoImageProcessor`]. See [`CLIPImageProcessor.__call__`] for details. | ||||
|         output_attentions (`bool`, *optional*): | ||||
|             Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned | ||||
|             tensors for more detail. | ||||
|         output_hidden_states (`bool`, *optional*): | ||||
|             Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for | ||||
|             more detail. | ||||
|         return_dict (`bool`, *optional*): | ||||
|             Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. | ||||
| """ | ||||
|  | ||||
|  | ||||
| # Copied from transformers.models.clip.modeling_clip.CLIPEncoder with CLIP->Siglip | ||||
| class SiglipEncoder(nn.Module): | ||||
|     """ | ||||
|     Transformer encoder consisting of `config.num_hidden_layers` self attention layers. Each layer is a | ||||
|     [`SiglipEncoderLayer`]. | ||||
|     Args: | ||||
|         config: SiglipConfig | ||||
|     """ | ||||
|  | ||||
|     def __init__(self, config: SiglipVisionConfig): | ||||
|         super().__init__() | ||||
|         self.config = config | ||||
|         self.layers = nn.ModuleList([SiglipEncoderLayer(config) for _ in range(config.num_hidden_layers)]) | ||||
|         self.gradient_checkpointing = False | ||||
|  | ||||
| class SiglipVisionTransformer(SiglipPreTrainedModel): | ||||
|     config_class = SiglipVisionConfig | ||||
|     main_input_name = "pixel_values" | ||||
|     _supports_flash_attn_2 = True | ||||
|  | ||||
|     def __init__(self, config: SiglipVisionConfig): | ||||
|         super().__init__(config) | ||||
|         self.config = config | ||||
|         embed_dim = config.hidden_size | ||||
|  | ||||
|         self.embeddings = SiglipVisionEmbeddings(config) | ||||
|         self.encoder = SiglipEncoder(config) | ||||
|         self.post_layernorm = nn.LayerNorm(embed_dim, eps=config.layer_norm_eps) | ||||
|         self._use_flash_attention_2 = config._attn_implementation == "flash_attention_2" | ||||
|  | ||||
|         # Initialize weights and apply final processing | ||||
|         self.post_init() | ||||
|  | ||||
|     def get_input_embeddings(self) -> nn.Module: | ||||
|         return self.embeddings.patch_embedding | ||||
|  | ||||
| import argparse | ||||
| import json | ||||
| import re | ||||
|  | ||||
| import numpy as np | ||||
| from gguf import * | ||||
| from transformers.models.idefics2.modeling_idefics2 import Idefics2VisionTransformer, Idefics2VisionConfig | ||||
|  | ||||
| TEXT = "clip.text" | ||||
| VISION = "clip.vision" | ||||
|  | ||||
|  | ||||
| def add_key_str(raw_key: str, arch: str) -> str: | ||||
|     return raw_key.format(arch=arch) | ||||
|  | ||||
|  | ||||
| def should_skip_tensor(name: str, has_text: bool, has_vision: bool, has_minicpmv: bool) -> bool: | ||||
|     if name in ( | ||||
|         "logit_scale", | ||||
|         "text_model.embeddings.position_ids", | ||||
|         "vision_model.embeddings.position_ids", | ||||
|     ): | ||||
|         return True | ||||
|  | ||||
|     if has_minicpmv and name in ["visual_projection.weight"]: | ||||
|         return True | ||||
|  | ||||
|     if name.startswith("v") and not has_vision: | ||||
|         return True | ||||
|  | ||||
|     if name.startswith("t") and not has_text: | ||||
|         return True | ||||
|  | ||||
|     return False | ||||
|  | ||||
|  | ||||
| def get_tensor_name(name: str) -> str: | ||||
|     if "projection" in name: | ||||
|         return name | ||||
|     if "mm_projector" in name: | ||||
|         name = name.replace("model.mm_projector", "mm") | ||||
|         name = re.sub(r'mm\.mlp\.mlp', 'mm.model.mlp', name, count=1) | ||||
|         name = re.sub(r'mm\.peg\.peg', 'mm.model.peg', name, count=1) | ||||
|         return name | ||||
|  | ||||
|     return name.replace("text_model", "t").replace("vision_model", "v").replace("encoder.layers", "blk").replace("embeddings.", "").replace("_proj", "").replace("self_attn.", "attn_").replace("layer_norm", "ln").replace("layernorm", "ln").replace("mlp.fc1", "ffn_down").replace("mlp.fc2", "ffn_up").replace("embedding", "embd").replace("final", "post").replace("layrnorm", "ln") | ||||
|  | ||||
|  | ||||
| def bytes_to_unicode(): | ||||
|     """ | ||||
|     Returns list of utf-8 byte and a corresponding list of unicode strings. | ||||
|     The reversible bpe codes work on unicode strings. | ||||
|     This means you need a large # of unicode characters in your vocab if you want to avoid UNKs. | ||||
|     When you're at something like a 10B token dataset you end up needing around 5K for decent coverage. | ||||
|     This is a significant percentage of your normal, say, 32K bpe vocab. | ||||
|     To avoid that, we want lookup tables between utf-8 bytes and unicode strings. | ||||
|     And avoids mapping to whitespace/control characters the bpe code barfs on. | ||||
|     """ | ||||
|     bs = ( | ||||
|         list(range(ord("!"), ord("~") + 1)) | ||||
|         + list(range(ord("¡"), ord("¬") + 1)) | ||||
|         + list(range(ord("®"), ord("ÿ") + 1)) | ||||
|     ) | ||||
|     cs = bs[:] | ||||
|     n = 0 | ||||
|     for b in range(2**8): | ||||
|         if b not in bs: | ||||
|             bs.append(b) | ||||
|             cs.append(2**8 + n) | ||||
|             n += 1 | ||||
|     cs = [chr(n) for n in cs] | ||||
|     return dict(zip(bs, cs)) | ||||
|  | ||||
|  | ||||
| ap = argparse.ArgumentParser() | ||||
| ap.add_argument("-m", "--model-dir", help="Path to model directory cloned from HF Hub", required=True) | ||||
| ap.add_argument("--use-f32", action="store_true", default=False, help="Use f32 instead of f16") | ||||
| ap.add_argument("--text-only", action="store_true", required=False, | ||||
|                 help="Save a text-only model. It can't be used to encode images") | ||||
| ap.add_argument("--vision-only", action="store_true", required=False, | ||||
|                 help="Save a vision-only model. It can't be used to encode texts") | ||||
| ap.add_argument("--clip-model-is-vision", action="store_true", required=False, | ||||
|                 help="The clip model is a pure vision model (ShareGPT4V vision extract for example)") | ||||
| ap.add_argument("--clip-model-is-openclip", action="store_true", required=False, | ||||
|                 help="The clip model is from openclip (for ViT-SO400M type))") | ||||
| ap.add_argument("--minicpmv-projector", help="Path to minicpmv.projector file. If specified, save an image encoder for MiniCPM-V models.") | ||||
| ap.add_argument("--projector-type", help="Type of projector. Possible values: mlp, ldp, ldpv2", choices=["mlp", "ldp", "ldpv2"], default="mlp") | ||||
| ap.add_argument("-o", "--output-dir", help="Directory to save GGUF files. Default is the original model directory", default=None) | ||||
| # Example --image_mean 0.48145466 0.4578275 0.40821073 --image_std 0.26862954 0.26130258 0.27577711 | ||||
| # Example --image_mean 0.5 0.5 0.5 --image_std 0.5 0.5 0.5 | ||||
| default_image_mean = [0.48145466, 0.4578275, 0.40821073] | ||||
| default_image_std = [0.26862954, 0.26130258, 0.27577711] | ||||
| ap.add_argument('--image-mean', type=float, nargs='+', help='Mean of the images for normalization (overrides processor) ', default=None) | ||||
| ap.add_argument('--image-std', type=float, nargs='+', help='Standard deviation of the images for normalization (overrides processor)', default=None) | ||||
| ap.add_argument('--minicpmv_version', type=int, help='minicpmv_version: MiniCPM-V-2 use 1; MiniCPM-V-2.5 use 2; MiniCPM-V-2.6 use 3; MiniCPM-o-2.6 use 4', default=2) | ||||
|  | ||||
| # with proper | ||||
| args = ap.parse_args() | ||||
|  | ||||
|  | ||||
| if args.text_only and args.vision_only: | ||||
|     print("--text-only and --image-only arguments cannot be specified at the same time.") | ||||
|     exit(1) | ||||
|  | ||||
| if args.use_f32: | ||||
|     print("WARNING: Weights for the convolution op is always saved in f16, as the convolution op in GGML does not support 32-bit kernel weights yet.") | ||||
|  | ||||
| # output in the same directory as the model if output_dir is None | ||||
| dir_model = args.model_dir | ||||
|  | ||||
| if args.clip_model_is_vision or not os.path.exists(dir_model + "/vocab.json") or args.clip_model_is_openclip: | ||||
|     vocab = None | ||||
|     tokens = None | ||||
| else: | ||||
|     with open(dir_model + "/vocab.json", "r", encoding="utf-8") as f: | ||||
|         vocab = json.load(f) | ||||
|         tokens = [key for key in vocab] | ||||
|  | ||||
| # possible data types | ||||
| #   ftype == 0 -> float32 | ||||
| #   ftype == 1 -> float16 | ||||
| # | ||||
| # map from ftype to string | ||||
| ftype_str = ["f32", "f16"] | ||||
|  | ||||
| ftype = 1 | ||||
| if args.use_f32: | ||||
|     ftype = 0 | ||||
|  | ||||
| # if args.clip_model_is_vision or args.clip_model_is_openclip: | ||||
| #     model = CLIPVisionModel.from_pretrained(dir_model) | ||||
| #     processor = None | ||||
| # else: | ||||
| #     model = CLIPModel.from_pretrained(dir_model) | ||||
| #     processor = CLIPProcessor.from_pretrained(dir_model) | ||||
|  | ||||
| minicpmv_version = args.minicpmv_version | ||||
| emb_dim = 4096 | ||||
| block_count = 26 | ||||
| if minicpmv_version == 1: | ||||
|     emb_dim = 2304 | ||||
|     block_count = 26 | ||||
| elif minicpmv_version == 2: | ||||
|     emb_dim = 4096 | ||||
|     block_count = 27 | ||||
| elif minicpmv_version == 3: | ||||
|     emb_dim = 3584 | ||||
|     block_count = 27 | ||||
| elif minicpmv_version == 4: | ||||
|     emb_dim = 3584 | ||||
|     block_count = 27 | ||||
|  | ||||
| default_vision_config = { | ||||
|         "hidden_size": 1152, | ||||
|         "image_size": 980, | ||||
|         "intermediate_size": 4304, | ||||
|         "model_type": "idefics2", | ||||
|         "num_attention_heads": 16, | ||||
|         "num_hidden_layers": 27, | ||||
|         "patch_size": 14, | ||||
|     } | ||||
|  | ||||
| vision_config = Idefics2VisionConfig(**default_vision_config) | ||||
| model = Idefics2VisionTransformer(vision_config) | ||||
| if minicpmv_version == 3: | ||||
|     vision_config = SiglipVisionConfig(**default_vision_config) | ||||
|     model = SiglipVisionTransformer(vision_config) | ||||
| elif minicpmv_version == 4: | ||||
|     vision_config = SiglipVisionConfig(**default_vision_config) | ||||
|     model = SiglipVisionTransformer(vision_config) | ||||
|  | ||||
| processor = None | ||||
| # if model.attn_pool is not None: | ||||
| #     model.attn_pool = torch.nn.Identity() | ||||
|  | ||||
| # model.blocks = model.blocks[:-1] | ||||
| model.load_state_dict(torch.load(os.path.join(dir_model, "minicpmv.clip"))) | ||||
|  | ||||
| fname_middle = None | ||||
| has_text_encoder = True | ||||
| has_vision_encoder = True | ||||
| has_minicpmv_projector = False | ||||
|  | ||||
| if args.text_only: | ||||
|     fname_middle = "text-" | ||||
|     has_vision_encoder = False | ||||
| elif args.minicpmv_projector is not None: | ||||
|     fname_middle = "mmproj-" | ||||
|     has_text_encoder = False | ||||
|     has_minicpmv_projector = True | ||||
| elif args.vision_only: | ||||
|     fname_middle = "vision-" | ||||
|     has_text_encoder = False | ||||
| else: | ||||
|     fname_middle = "" | ||||
|  | ||||
| output_dir = args.output_dir if args.output_dir is not None else dir_model | ||||
| os.makedirs(output_dir, exist_ok=True) | ||||
| output_prefix = os.path.basename(output_dir).replace("ggml_", "") | ||||
| fname_out = os.path.join(output_dir, f"{fname_middle}model-{ftype_str[ftype]}.gguf") | ||||
| fout = GGUFWriter(path=fname_out, arch="clip") | ||||
|  | ||||
| fout.add_bool("clip.has_text_encoder", has_text_encoder) | ||||
| fout.add_bool("clip.has_vision_encoder", has_vision_encoder) | ||||
| fout.add_bool("clip.has_minicpmv_projector", has_minicpmv_projector) | ||||
| fout.add_file_type(ftype) | ||||
| if args.text_only: | ||||
|     fout.add_description("text-only CLIP model") | ||||
| elif args.vision_only and not has_minicpmv_projector: | ||||
|     fout.add_description("vision-only CLIP model") | ||||
| elif has_minicpmv_projector: | ||||
|     fout.add_description("image encoder for MiniCPM-V") | ||||
|     # add projector type | ||||
|     fout.add_string("clip.projector_type", "resampler") | ||||
|     fout.add_int32("clip.minicpmv_version", minicpmv_version) | ||||
| else: | ||||
|     fout.add_description("two-tower CLIP model") | ||||
|  | ||||
| if has_vision_encoder: | ||||
|     # vision_model hparams | ||||
|     fout.add_uint32("clip.vision.image_size", 448) | ||||
|     fout.add_uint32("clip.vision.patch_size", 14) | ||||
|     fout.add_uint32(add_key_str(KEY_EMBEDDING_LENGTH, VISION), 1152) | ||||
|     fout.add_uint32(add_key_str(KEY_FEED_FORWARD_LENGTH, VISION), 4304) | ||||
|     fout.add_uint32("clip.vision.projection_dim", 0) | ||||
|     fout.add_uint32(add_key_str(KEY_ATTENTION_HEAD_COUNT, VISION), 16) | ||||
|     fout.add_float32(add_key_str(KEY_ATTENTION_LAYERNORM_EPS, VISION), 1e-6) | ||||
|     fout.add_uint32(add_key_str(KEY_BLOCK_COUNT, VISION), block_count) | ||||
|  | ||||
|     if processor is not None: | ||||
|         image_mean = processor.image_processor.image_mean if args.image_mean is None or args.image_mean == default_image_mean else args.image_mean | ||||
|         image_std = processor.image_processor.image_std if args.image_std is None or args.image_std == default_image_std else args.image_std | ||||
|     else: | ||||
|         image_mean = args.image_mean if args.image_mean is not None else default_image_mean | ||||
|         image_std = args.image_std if args.image_std is not None else default_image_std | ||||
|     fout.add_array("clip.vision.image_mean", image_mean) | ||||
|     fout.add_array("clip.vision.image_std", image_std) | ||||
|  | ||||
| use_gelu = True | ||||
| fout.add_bool("clip.use_gelu", use_gelu) | ||||
|  | ||||
| def get_1d_sincos_pos_embed_from_grid(embed_dim, pos): | ||||
|     """ | ||||
|     embed_dim: output dimension for each position | ||||
|     pos: a list of positions to be encoded: size (M,) | ||||
|     out: (M, D) | ||||
|     """ | ||||
|     assert embed_dim % 2 == 0 | ||||
|     omega = np.arange(embed_dim // 2, dtype=np.float32) | ||||
|     omega /= embed_dim / 2. | ||||
|     omega = 1. / 10000 ** omega  # (D/2,) | ||||
|  | ||||
|     pos = pos.reshape(-1)  # (M,) | ||||
|     out = np.einsum('m,d->md', pos, omega)  # (M, D/2), outer product | ||||
|  | ||||
|     emb_sin = np.sin(out)  # (M, D/2) | ||||
|     emb_cos = np.cos(out)  # (M, D/2) | ||||
|  | ||||
|     emb = np.concatenate([emb_sin, emb_cos], axis=1)  # (M, D) | ||||
|     return emb | ||||
|  | ||||
| def get_2d_sincos_pos_embed_from_grid(embed_dim, grid): | ||||
|     assert embed_dim % 2 == 0 | ||||
|  | ||||
|     # use half of dimensions to encode grid_h | ||||
|     emb_h = get_1d_sincos_pos_embed_from_grid(embed_dim // 2, grid[0])  # (H*W, D/2) | ||||
|     emb_w = get_1d_sincos_pos_embed_from_grid(embed_dim // 2, grid[1])  # (H*W, D/2) | ||||
|  | ||||
|     emb = np.concatenate([emb_h, emb_w], axis=1)  # (H*W, D) | ||||
|     return emb | ||||
|  | ||||
|  | ||||
| # https://github.com/facebookresearch/mae/blob/efb2a8062c206524e35e47d04501ed4f544c0ae8/util/pos_embed.py#L20 | ||||
| def get_2d_sincos_pos_embed(embed_dim, grid_size, cls_token=False): | ||||
|     """ | ||||
|     grid_size: int of the grid height and width | ||||
|     return: | ||||
|     pos_embed: [grid_size*grid_size, embed_dim] or [1+grid_size*grid_size, embed_dim] (w/ or w/o cls_token) | ||||
|     """ | ||||
|     if isinstance(grid_size, int): | ||||
|         grid_h_size, grid_w_size = grid_size, grid_size | ||||
|     else: | ||||
|         grid_h_size, grid_w_size = grid_size[0], grid_size[1] | ||||
|  | ||||
|     grid_h = np.arange(grid_h_size, dtype=np.float32) | ||||
|     grid_w = np.arange(grid_w_size, dtype=np.float32) | ||||
|     grid = np.meshgrid(grid_w, grid_h)  # here w goes first | ||||
|     grid = np.stack(grid, axis=0) | ||||
|  | ||||
|     grid = grid.reshape([2, 1, grid_h_size, grid_w_size]) | ||||
|     pos_embed = get_2d_sincos_pos_embed_from_grid(embed_dim, grid) | ||||
|     if cls_token: | ||||
|         pos_embed = np.concatenate([np.zeros([1, embed_dim]), pos_embed], axis=0) | ||||
|     return pos_embed | ||||
|  | ||||
| def _replace_name_resampler(s, v): | ||||
|     if re.match("resampler.pos_embed", s): | ||||
|         return { | ||||
|             s: v, | ||||
|             re.sub("pos_embed", "pos_embed_k", s): torch.from_numpy(get_2d_sincos_pos_embed(emb_dim, (70, 70))), | ||||
|         } | ||||
|     if re.match("resampler.proj", s): | ||||
|         return { | ||||
|             re.sub("proj", "pos_embed_k", s): torch.from_numpy(get_2d_sincos_pos_embed(emb_dim, (70, 70))), | ||||
|             re.sub("proj", "proj.weight", s): v.transpose(-1, -2).contiguous(), | ||||
|         } | ||||
|     if re.match("resampler.attn.in_proj_.*", s): | ||||
|         return { | ||||
|             re.sub("attn.in_proj_", "attn.q.", s): v.chunk(3, dim=0)[0], | ||||
|             re.sub("attn.in_proj_", "attn.k.", s): v.chunk(3, dim=0)[1], | ||||
|             re.sub("attn.in_proj_", "attn.v.", s): v.chunk(3, dim=0)[2], | ||||
|         } | ||||
|     return {s: v} | ||||
|  | ||||
| if has_minicpmv_projector: | ||||
|     projector = torch.load(args.minicpmv_projector) | ||||
|     new_state_dict = {} | ||||
|     for k, v in projector.items(): | ||||
|         kvs = _replace_name_resampler(k, v) | ||||
|         for nk, nv in kvs.items(): | ||||
|             new_state_dict[nk] = nv | ||||
|     projector = new_state_dict | ||||
|     ftype_cur = 0 | ||||
|     for name, data in projector.items(): | ||||
|         name = get_tensor_name(name) | ||||
|         data = data.squeeze().numpy() | ||||
|  | ||||
|         n_dims = len(data.shape) | ||||
|         if ftype == 1: | ||||
|             if name[-7:] == ".weight" and n_dims == 2: | ||||
|                 print("  Converting to float16") | ||||
|                 data = data.astype(np.float16) | ||||
|                 ftype_cur = 1 | ||||
|             else: | ||||
|                 print("  Converting to float32") | ||||
|                 data = data.astype(np.float32) | ||||
|                 ftype_cur = 0 | ||||
|         else: | ||||
|             if data.dtype != np.float32: | ||||
|                 print("  Converting to float32") | ||||
|                 data = data.astype(np.float32) | ||||
|                 ftype_cur = 0 | ||||
|  | ||||
|         fout.add_tensor(name, data) | ||||
|         print(f"{name} - {ftype_str[ftype_cur]} - shape = {data.shape}") | ||||
|  | ||||
|     print("Projector tensors added\n") | ||||
|  | ||||
| def _replace_name(s, v): | ||||
|     s = "vision_model." + s | ||||
|     if re.match("vision_model.embeddings.position_embedding", s): | ||||
|         v = v.unsqueeze(0) | ||||
|         return {s: v} | ||||
|  | ||||
|     return {s: v} | ||||
|  | ||||
| state_dict = model.state_dict() | ||||
| new_state_dict = {} | ||||
| for k, v in state_dict.items(): | ||||
|     kvs = _replace_name(k, v) | ||||
|     for nk, nv in kvs.items(): | ||||
|         new_state_dict[nk] = nv | ||||
| state_dict = new_state_dict | ||||
| for name, data in state_dict.items(): | ||||
|     if should_skip_tensor(name, has_text_encoder, has_vision_encoder, has_minicpmv_projector): | ||||
|         # we don't need this | ||||
|         print(f"skipping parameter: {name}") | ||||
|         continue | ||||
|  | ||||
|     name = get_tensor_name(name) | ||||
|     data = data.squeeze().numpy() | ||||
|  | ||||
|     n_dims = len(data.shape) | ||||
|  | ||||
|     # ftype == 0 -> float32, ftype == 1 -> float16 | ||||
|     ftype_cur = 0 | ||||
|     if n_dims == 4: | ||||
|         print(f"tensor {name} is always saved in f16") | ||||
|         data = data.astype(np.float16) | ||||
|         ftype_cur = 1 | ||||
|     elif ftype == 1: | ||||
|         if name[-7:] == ".weight" and n_dims == 2: | ||||
|             print("  Converting to float16") | ||||
|             data = data.astype(np.float16) | ||||
|             ftype_cur = 1 | ||||
|         else: | ||||
|             print("  Converting to float32") | ||||
|             data = data.astype(np.float32) | ||||
|             ftype_cur = 0 | ||||
|     else: | ||||
|         if data.dtype != np.float32: | ||||
|             print("  Converting to float32") | ||||
|             data = data.astype(np.float32) | ||||
|             ftype_cur = 0 | ||||
|  | ||||
|     print(f"{name} - {ftype_str[ftype_cur]} - shape = {data.shape}") | ||||
|     fout.add_tensor(name, data) | ||||
|  | ||||
|  | ||||
| fout.write_header_to_file() | ||||
| fout.write_kv_data_to_file() | ||||
| fout.write_tensors_to_file() | ||||
| fout.close() | ||||
|  | ||||
| print("Done. Output file: " + fname_out) | ||||
		Reference in New Issue
	
	Block a user
	 Diego Devesa
					Diego Devesa