mirror of
				https://github.com/ggml-org/llama.cpp.git
				synced 2025-10-30 08:42:00 +00:00 
			
		
		
		
	llama : move end-user examples to tools directory (#13249)
* llama : move end-user examples to tools directory --------- Co-authored-by: Xuan Son Nguyen <son@huggingface.co>
This commit is contained in:
		
							
								
								
									
										280
									
								
								tools/llava/glmedge-convert-image-encoder-to-gguf.py
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										280
									
								
								tools/llava/glmedge-convert-image-encoder-to-gguf.py
									
									
									
									
									
										Normal file
									
								
							| @@ -0,0 +1,280 @@ | ||||
| import argparse | ||||
| import os | ||||
| import json | ||||
| import re | ||||
|  | ||||
| import torch | ||||
| import numpy as np | ||||
| from gguf import * | ||||
|  | ||||
| TEXT = "clip.text" | ||||
| VISION = "clip.vision" | ||||
| from transformers import SiglipVisionModel, SiglipVisionConfig | ||||
|  | ||||
| def k(raw_key: str, arch: str) -> str: | ||||
|     return raw_key.format(arch=arch) | ||||
|  | ||||
|  | ||||
| def should_skip_tensor(name: str, has_text: bool, has_vision: bool, has_llava: bool) -> bool: | ||||
|     if name in ( | ||||
|         "logit_scale", | ||||
|         "text_model.embeddings.position_ids", | ||||
|         "vision_model.embeddings.position_ids", | ||||
|     ): | ||||
|         return True | ||||
|  | ||||
|     if name in ( | ||||
|         "vision_model.head.probe", | ||||
|         "vision_model.head.attention.in_proj_weight", | ||||
|         "vision_model.head.attention.in_proj_bias", | ||||
|         "vision_model.head.attention.out_proj.weight", | ||||
|         "vision_model.head.attention.out_proj.bias", | ||||
|         "vision_model.head.layernorm.weight", | ||||
|         "vision_model.head.layernorm.bias", | ||||
|         "vision_model.head.mlp.fc1.weight", | ||||
|         "vision_model.head.mlp.fc1.bias", | ||||
|         "vision_model.head.mlp.fc2.weight", | ||||
|         "vision_model.head.mlp.fc2.bias" | ||||
|     ): | ||||
|         return True | ||||
|  | ||||
|     if name.startswith("v") and not has_vision: | ||||
|         return True | ||||
|  | ||||
|     if name.startswith("t") and not has_text: | ||||
|         return True | ||||
|  | ||||
|     return False | ||||
|  | ||||
|  | ||||
| def get_tensor_name(name: str) -> str: | ||||
|     if "projection" in name: | ||||
|         return name | ||||
|     if "mm_projector" in name: | ||||
|         name = name.replace("model.mm_projector", "mm") | ||||
|         name = re.sub(r'mm\.mlp\.mlp', 'mm.model.mlp', name, count=1) | ||||
|         name = re.sub(r'mm\.peg\.peg', 'mm.model.peg', name, count=1) | ||||
|         return name | ||||
|  | ||||
|     return name.replace("text_model", "t").replace("vision_model", "v").replace("encoder.layers", "blk").replace("embeddings.", "").replace("_proj", "").replace("self_attn.", "attn_").replace("layer_norm", "ln").replace("layernorm", "ln").replace("mlp.fc1", "ffn_down").replace("mlp.fc2", "ffn_up").replace("embedding", "embd").replace("final", "post").replace("layrnorm", "ln") | ||||
|  | ||||
|  | ||||
| def bytes_to_unicode(): | ||||
|     """ | ||||
|     Returns list of utf-8 byte and a corresponding list of unicode strings. | ||||
|     The reversible bpe codes work on unicode strings. | ||||
|     This means you need a large # of unicode characters in your vocab if you want to avoid UNKs. | ||||
|     When you're at something like a 10B token dataset you end up needing around 5K for decent coverage. | ||||
|     This is a significant percentage of your normal, say, 32K bpe vocab. | ||||
|     To avoid that, we want lookup tables between utf-8 bytes and unicode strings. | ||||
|     And avoids mapping to whitespace/control characters the bpe code barfs on. | ||||
|     """ | ||||
|     bs = ( | ||||
|         list(range(ord("!"), ord("~") + 1)) | ||||
|         + list(range(ord("¡"), ord("¬") + 1)) | ||||
|         + list(range(ord("®"), ord("ÿ") + 1)) | ||||
|     ) | ||||
|     cs = bs[:] | ||||
|     n = 0 | ||||
|     for b in range(2**8): | ||||
|         if b not in bs: | ||||
|             bs.append(b) | ||||
|             cs.append(2**8 + n) | ||||
|             n += 1 | ||||
|     cs = [chr(n) for n in cs] | ||||
|     return dict(zip(bs, cs)) | ||||
|  | ||||
|  | ||||
| ap = argparse.ArgumentParser() | ||||
| ap.add_argument("-m", "--model-dir", help="Path to model directory cloned from HF Hub", required=True) | ||||
| ap.add_argument("--use-f32", action="store_true", default=False, help="Use f32 instead of f16") | ||||
| ap.add_argument("--text-only", action="store_true", required=False, | ||||
|                 help="Save a text-only model. It can't be used to encode images") | ||||
| ap.add_argument("--vision-only", action="store_true", required=False, | ||||
|                 help="Save a vision-only model. It can't be used to encode texts") | ||||
| ap.add_argument("--clip-model-is-vision", action="store_true", required=False, | ||||
|                 help="The clip model is a pure vision model (ShareGPT4V vision extract for example)") | ||||
| ap.add_argument("--clip-model-is-openclip", action="store_true", required=False, | ||||
|                 help="The clip model is from openclip (for ViT-SO400M type))") | ||||
| ap.add_argument("--llava-projector", help="Path to llava.projector file. If specified, save an image encoder for LLaVA models.") | ||||
| ap.add_argument("--projector-type", help="Type of projector. Possible values: mlp, ldp, ldpv2", choices=["mlp", "ldp", "ldpv2","adapter"], default="adapter") | ||||
| ap.add_argument("-o", "--output-dir", help="Directory to save GGUF files. Default is the original model directory", default=None) | ||||
| # Example --image_mean 0.48145466 0.4578275 0.40821073 --image_std 0.26862954 0.26130258 0.27577711 | ||||
| # Example --image_mean 0.5 0.5 0.5 --image_std 0.5 0.5 0.5 | ||||
| default_image_mean = [0.5, 0.5, 0.5] | ||||
| default_image_std = [0.5, 0.5, 0.5] | ||||
| ap.add_argument('--image-mean', type=float, nargs='+', help='Mean of the images for normalization (overrides processor) ', default=None) | ||||
| ap.add_argument('--image-std', type=float, nargs='+', help='Standard deviation of the images for normalization (overrides processor)', default=None) | ||||
|  | ||||
| # with proper | ||||
| args = ap.parse_args() | ||||
|  | ||||
|  | ||||
| if args.text_only and args.vision_only: | ||||
|     print("--text-only and --image-only arguments cannot be specified at the same time.") | ||||
|     exit(1) | ||||
|  | ||||
| if args.use_f32: | ||||
|     print("WARNING: Weights for the convolution op is always saved in f16, as the convolution op in GGML does not support 32-bit kernel weights yet.") | ||||
|  | ||||
| # output in the same directory as the model if output_dir is None | ||||
| dir_model = args.model_dir | ||||
|  | ||||
| if args.clip_model_is_vision or not os.path.exists(dir_model + "/vocab.json") or args.clip_model_is_openclip: | ||||
|     vocab = None | ||||
|     tokens = None | ||||
| else: | ||||
|     with open(dir_model + "/vocab.json", "r", encoding="utf-8") as f: | ||||
|         vocab = json.load(f) | ||||
|         tokens = [key for key in vocab] | ||||
|  | ||||
| with open(dir_model + "/config.json", "r", encoding="utf-8") as f: | ||||
|     config = json.load(f) | ||||
|     if args.clip_model_is_vision: | ||||
|         v_hparams = config | ||||
|         t_hparams = None | ||||
|     else: | ||||
|         v_hparams = config["vision_config"] | ||||
|         t_hparams = None | ||||
|  | ||||
| # possible data types | ||||
| #   ftype == 0 -> float32 | ||||
| #   ftype == 1 -> float16 | ||||
| # | ||||
| # map from ftype to string | ||||
| ftype_str = ["f32", "f16"] | ||||
|  | ||||
| ftype = 1 | ||||
| if args.use_f32: | ||||
|     ftype = 0 | ||||
|  | ||||
| vision_config = SiglipVisionConfig(**v_hparams) | ||||
| model = SiglipVisionModel(vision_config) | ||||
| model.load_state_dict(torch.load(os.path.join(dir_model, "glm.clip"))) | ||||
|  | ||||
| fname_middle = None | ||||
| has_text_encoder = False | ||||
| has_vision_encoder = True | ||||
| has_glm_projector = True | ||||
| if args.text_only: | ||||
|     fname_middle = "text-" | ||||
|     has_vision_encoder = False | ||||
| elif args.llava_projector is not None: | ||||
|     fname_middle = "mmproj-" | ||||
|     has_text_encoder = False | ||||
|     has_glm_projector = True | ||||
| elif args.vision_only: | ||||
|     fname_middle = "vision-" | ||||
|     has_text_encoder = False | ||||
| else: | ||||
|     fname_middle = "" | ||||
|  | ||||
| output_dir = args.output_dir if args.output_dir is not None else dir_model | ||||
| os.makedirs(output_dir, exist_ok=True) | ||||
| output_prefix = os.path.basename(output_dir).replace("ggml_", "") | ||||
| fname_out = os.path.join(output_dir, f"{fname_middle}model-{ftype_str[ftype]}.gguf") | ||||
| fout = GGUFWriter(path=fname_out, arch="clip") | ||||
|  | ||||
| fout.add_bool("clip.has_text_encoder", has_text_encoder) | ||||
| fout.add_bool("clip.has_vision_encoder", has_vision_encoder) | ||||
| fout.add_bool("clip.has_glm_projector", has_glm_projector) | ||||
| fout.add_file_type(ftype) | ||||
| model_name = config["_name_or_path"] if "_name_or_path" in config else os.path.basename(dir_model) | ||||
| fout.add_name(model_name) | ||||
| if has_glm_projector: | ||||
|     fout.add_description("image encoder for glm4v") | ||||
|     fout.add_string("clip.projector_type", "adapter") | ||||
| else: | ||||
|     fout.add_description("two-tower CLIP model") | ||||
|  | ||||
| if has_text_encoder: | ||||
|     assert t_hparams is not None | ||||
|     assert tokens is not None | ||||
|     # text_model hparams | ||||
|     fout.add_uint32(k(KEY_CONTEXT_LENGTH, TEXT), t_hparams["max_position_embeddings"]) | ||||
|     fout.add_uint32(k(KEY_EMBEDDING_LENGTH, TEXT), t_hparams["hidden_size"]) | ||||
|     fout.add_uint32(k(KEY_FEED_FORWARD_LENGTH, TEXT), t_hparams["intermediate_size"]) | ||||
|     fout.add_uint32("clip.text.projection_dim", t_hparams.get("projection_dim", config["projection_dim"])) | ||||
|     fout.add_uint32(k(KEY_ATTENTION_HEAD_COUNT, TEXT), t_hparams["num_attention_heads"]) | ||||
|     fout.add_float32(k(KEY_ATTENTION_LAYERNORM_EPS, TEXT), t_hparams["layer_norm_eps"]) | ||||
|     fout.add_uint32(k(KEY_BLOCK_COUNT, TEXT), t_hparams["num_hidden_layers"]) | ||||
|     fout.add_token_list(tokens) | ||||
|  | ||||
| if has_vision_encoder: | ||||
|     # vision_model hparams | ||||
|     fout.add_uint32("clip.vision.image_size", v_hparams["image_size"]) | ||||
|     fout.add_uint32("clip.vision.patch_size", v_hparams["patch_size"]) | ||||
|     fout.add_uint32(k(KEY_EMBEDDING_LENGTH, VISION), v_hparams["hidden_size"]) | ||||
|     fout.add_uint32(k(KEY_FEED_FORWARD_LENGTH, VISION), v_hparams["intermediate_size"]) | ||||
|     fout.add_uint32("clip.vision.projection_dim", 0) | ||||
|     fout.add_uint32(k(KEY_ATTENTION_HEAD_COUNT, VISION), v_hparams["num_attention_heads"]) | ||||
|     fout.add_float32(k(KEY_ATTENTION_LAYERNORM_EPS, VISION), 1e-6) | ||||
|     fout.add_uint32(k(KEY_BLOCK_COUNT, VISION), v_hparams["num_hidden_layers"]) | ||||
|  | ||||
|     image_mean = args.image_mean if args.image_mean is not None else default_image_mean | ||||
|     image_std = args.image_std if args.image_std is not None else default_image_std | ||||
|     fout.add_array("clip.vision.image_mean", image_mean) | ||||
|     fout.add_array("clip.vision.image_std", image_std) | ||||
|  | ||||
| fout.add_bool("clip.use_gelu", True) | ||||
|  | ||||
|  | ||||
| if has_glm_projector: | ||||
|     # model.vision_model.encoder.layers.pop(-1)  # pyright: ignore[reportAttributeAccessIssue] | ||||
|     projector = torch.load(args.llava_projector) | ||||
|     for name, data in projector.items(): | ||||
|         name = get_tensor_name(name) | ||||
|         # pw and dw conv ndim==4 | ||||
|         if data.ndim == 2 or data.ndim == 4: | ||||
|             data = data.squeeze().numpy().astype(np.float16) | ||||
|         else: | ||||
|             data = data.squeeze().numpy().astype(np.float32) | ||||
|         if name.startswith("vision."): | ||||
|             name=name.replace("vision.","") | ||||
|         fout.add_tensor(name, data) | ||||
|         print(f"Projector {name} - {data.dtype} - shape = {data.shape}") | ||||
|         # print(f"Projector {name} tensors added\n") | ||||
|  | ||||
| state_dict = model.state_dict()  # pyright: ignore[reportAttributeAccessIssue] | ||||
| for name, data in state_dict.items(): | ||||
|     if should_skip_tensor(name, has_text_encoder, has_vision_encoder, has_glm_projector): | ||||
|         # we don't need this | ||||
|         print(f"skipping parameter: {name}") | ||||
|         continue | ||||
|  | ||||
|     name = get_tensor_name(name) | ||||
|     data = data.squeeze().numpy() | ||||
|  | ||||
|     n_dims = len(data.shape) | ||||
|  | ||||
|     # ftype == 0 -> float32, ftype == 1 -> float16 | ||||
|     ftype_cur = 0 | ||||
|     if n_dims == 4: | ||||
|         print(f"tensor {name} is always saved in f16") | ||||
|         data = data.astype(np.float16) | ||||
|         ftype_cur = 1 | ||||
|     elif ftype == 1: | ||||
|         if name[-7:] == ".weight" and n_dims == 2: | ||||
|             # print("  Converting to float16") | ||||
|             data = data.astype(np.float16) | ||||
|             ftype_cur = 1 | ||||
|         else: | ||||
|             # print("  Converting to float32") | ||||
|             data = data.astype(np.float32) | ||||
|             ftype_cur = 0 | ||||
|     else: | ||||
|         if data.dtype != np.float32: | ||||
|             # print("  Converting to float32") | ||||
|             data = data.astype(np.float32) | ||||
|             ftype_cur = 0 | ||||
|     print(f"siglip {name} - {data.dtype} - shape = {data.shape}") | ||||
|     # print(f"{name} - {ftype_str[ftype_cur]} - shape = {data.shape}") | ||||
|     fout.add_tensor(name, data) | ||||
|  | ||||
|  | ||||
| fout.write_header_to_file() | ||||
| fout.write_kv_data_to_file() | ||||
| fout.write_tensors_to_file() | ||||
| fout.close() | ||||
|  | ||||
| print("Done. Output file: " + fname_out) | ||||
		Reference in New Issue
	
	Block a user
	 Diego Devesa
					Diego Devesa