mirror of
				https://github.com/ggml-org/llama.cpp.git
				synced 2025-10-30 08:42:00 +00:00 
			
		
		
		
	llama : move end-user examples to tools directory (#13249)
* llama : move end-user examples to tools directory --------- Co-authored-by: Xuan Son Nguyen <son@huggingface.co>
This commit is contained in:
		
							
								
								
									
										434
									
								
								tools/export-lora/export-lora.cpp
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										434
									
								
								tools/export-lora/export-lora.cpp
									
									
									
									
									
										Normal file
									
								
							| @@ -0,0 +1,434 @@ | ||||
| #include "ggml.h" | ||||
| #include "ggml-alloc.h" | ||||
| #include "gguf.h" | ||||
|  | ||||
| #include "arg.h" | ||||
| #include "common.h" | ||||
|  | ||||
| #include <map> | ||||
| #include <vector> | ||||
| #include <string> | ||||
| #include <fstream> | ||||
|  | ||||
| static bool g_verbose = false; | ||||
|  | ||||
| struct tensor_transformation { | ||||
|     struct ggml_tensor * in; | ||||
|     struct ggml_tensor * out; | ||||
|     bool is_copy; | ||||
| }; | ||||
|  | ||||
| static std::string get_kv_str(struct gguf_context * ctx_gguf, const std::string & key){ | ||||
|     int id = gguf_find_key(ctx_gguf, key.c_str()); | ||||
|     return id < 0 ? "" : std::string(gguf_get_val_str(ctx_gguf, id)); | ||||
| } | ||||
|  | ||||
| static float get_kv_f32(struct gguf_context * ctx_gguf, const std::string & key) { | ||||
|     int id = gguf_find_key(ctx_gguf, key.c_str()); | ||||
|     return id < 0 ? 0.0f : gguf_get_val_f32(ctx_gguf, id); | ||||
| } | ||||
|  | ||||
| static void zeros(std::ofstream & file, size_t n) { | ||||
|     char zero = 0; | ||||
|     for (size_t i = 0; i < n; ++i) { | ||||
|         file.write(&zero, 1); | ||||
|     } | ||||
| } | ||||
|  | ||||
| static std::string ggml_ne_string(const ggml_tensor * t) { | ||||
|     std::string str; | ||||
|     for (int i = 0; i < GGML_MAX_DIMS; ++i) { | ||||
|         str += std::to_string(t->ne[i]); | ||||
|         if (i + 1 < GGML_MAX_DIMS) { | ||||
|             str += ", "; | ||||
|         } | ||||
|     } | ||||
|     return str; | ||||
| } | ||||
|  | ||||
| static struct gguf_context * load_gguf(std::string & fname, struct ggml_context ** ctx_ggml) { | ||||
|     struct gguf_init_params params = { | ||||
|         /*.no_alloc = */ true, | ||||
|         /*.ctx      = */ ctx_ggml, | ||||
|     }; | ||||
|     struct gguf_context * ctx_gguf = gguf_init_from_file(fname.c_str(), params); | ||||
|     if (!ctx_gguf) { | ||||
|         throw std::runtime_error("failed to load input GGUF from " + fname); | ||||
|     } | ||||
|     return ctx_gguf; | ||||
| } | ||||
|  | ||||
| struct file_input { | ||||
|     struct ggml_context * ctx_meta = nullptr; | ||||
|     struct gguf_context * ctx_gguf = nullptr; | ||||
|     std::ifstream f_in; | ||||
|     std::map<std::string, ggml_tensor *> tensors; | ||||
|     float alpha; | ||||
|     float scale; | ||||
|  | ||||
|     file_input(std::string & fname, float scale): f_in(fname, std::ios::binary), scale(scale) { | ||||
|         if (!f_in.is_open()) { | ||||
|             throw std::runtime_error("failed to open input gguf from " + fname); | ||||
|         } | ||||
|  | ||||
|         ctx_gguf = load_gguf(fname, &ctx_meta); | ||||
|         alpha = get_kv_f32(ctx_gguf, "adapter.lora.alpha"); | ||||
|         printf("%s: loaded gguf from %s\n", __func__, fname.c_str()); | ||||
|  | ||||
|         for (ggml_tensor * cur = ggml_get_first_tensor(ctx_meta); cur; cur = ggml_get_next_tensor(ctx_meta, cur)) { | ||||
|             std::string name(cur->name); | ||||
|             tensors[name] = cur; | ||||
|             if (g_verbose) { | ||||
|                 printf("%s: %s\n", __func__, cur->name); | ||||
|             } | ||||
|         } | ||||
|     } | ||||
|  | ||||
|     ggml_tensor * get_tensor(std::string name) { | ||||
|         if (tensors.find(name) == tensors.end()) { | ||||
|             return nullptr; | ||||
|         } | ||||
|         return tensors[name]; | ||||
|     } | ||||
|  | ||||
|     void read_tensor_data(std::string name, std::vector<uint8_t> & buf) { | ||||
|         if (tensors.find(name) == tensors.end()) { | ||||
|             throw std::runtime_error("cannot find tensor with name: " + name); | ||||
|         } | ||||
|         auto len = ggml_nbytes(tensors[name]); | ||||
|         if (buf.size() < len) { | ||||
|             buf.resize(len); | ||||
|         } | ||||
|         auto i_tensor_in = gguf_find_tensor(ctx_gguf, name.c_str()); // idx of tensor in the input file | ||||
|         auto offset = gguf_get_data_offset(ctx_gguf) + gguf_get_tensor_offset(ctx_gguf, i_tensor_in); | ||||
|         f_in.seekg(offset); | ||||
|         f_in.read((char* )buf.data(), len); | ||||
|     } | ||||
|  | ||||
|     ~file_input() { | ||||
|         gguf_free(ctx_gguf); | ||||
|         ggml_free(ctx_meta); | ||||
|     } | ||||
| }; | ||||
|  | ||||
| struct lora_merge_ctx { | ||||
|     // input base model + adapters | ||||
|     file_input base_model; | ||||
|     std::vector<std::unique_ptr<file_input>> adapters; | ||||
|  | ||||
|     // for computing merged tensor | ||||
|     int n_threads; | ||||
|     ggml_backend_t backend = nullptr; | ||||
|     ggml_gallocr_t allocr = nullptr; | ||||
|     std::vector<uint8_t> read_buf; | ||||
|  | ||||
|     // output file | ||||
|     struct gguf_context * ctx_out; | ||||
|     struct ggml_context * ctx_out_ggml; | ||||
|     std::ofstream fout; | ||||
|  | ||||
|     lora_merge_ctx( | ||||
|             std::string & base_fname, | ||||
|             std::vector<common_adapter_lora_info> & lora_files, | ||||
|             std::string & outfile, | ||||
|             int n_threads) : base_model(base_fname, 0), n_threads(n_threads), fout(outfile, std::ios::binary) { | ||||
|         fout.exceptions(std::ofstream::failbit); // fail fast on write errors | ||||
|  | ||||
|         if (gguf_find_key(base_model.ctx_gguf, LLM_KV_SPLIT_COUNT) >= 0) { | ||||
|             throw std::runtime_error("split model is not yet supported"); | ||||
|         } | ||||
|  | ||||
|         for (auto & lora_inp : lora_files) { | ||||
|             auto fname = lora_inp.path; | ||||
|             auto scale = lora_inp.scale; | ||||
|             std::unique_ptr<file_input> adapter(new file_input(fname, scale)); | ||||
|             check_metadata_lora(adapter.get()); | ||||
|             adapters.push_back(std::move(adapter)); | ||||
|         } | ||||
|  | ||||
|         ctx_out = gguf_init_empty(); | ||||
|         struct ggml_init_params params = { | ||||
|             /*.mem_size   =*/ gguf_get_n_tensors(base_model.ctx_gguf)*ggml_tensor_overhead(), | ||||
|             /*.mem_buffer =*/ NULL, | ||||
|             /*.no_alloc   =*/ true, | ||||
|         }; | ||||
|         ctx_out_ggml = ggml_init(params); | ||||
|         backend = ggml_backend_cpu_init(); | ||||
|         allocr = ggml_gallocr_new(ggml_backend_get_default_buffer_type(backend)); | ||||
|     } | ||||
|  | ||||
|     void check_metadata_lora(file_input * adapter) { | ||||
|         auto general_type = get_kv_str(adapter->ctx_gguf, "general.type"); | ||||
|         if (general_type != "adapter") { | ||||
|             throw std::runtime_error("expect general.type to be 'adapter', but got: " + general_type); | ||||
|         } | ||||
|  | ||||
|         auto adapter_type = get_kv_str(adapter->ctx_gguf, "adapter.type"); | ||||
|         if (adapter_type != "lora") { | ||||
|             throw std::runtime_error("expect adapter.type to be 'lora', but got: " + adapter_type); | ||||
|         } | ||||
|  | ||||
|         auto general_arch_base = get_kv_str(base_model.ctx_gguf, "general.architecture"); | ||||
|         auto general_arch_lora = get_kv_str(adapter->ctx_gguf,   "general.architecture"); | ||||
|         if (general_arch_base != general_arch_lora) { | ||||
|             throw std::runtime_error("model arch and LoRA arch mismatch"); | ||||
|         } | ||||
|     } | ||||
|  | ||||
|     ggml_type get_out_tensor_type(struct ggml_tensor * t) { | ||||
|         if (t->type == GGML_TYPE_F32) { | ||||
|             return GGML_TYPE_F32; | ||||
|         } else { | ||||
|             return GGML_TYPE_F16; | ||||
|         } | ||||
|     } | ||||
|  | ||||
|     void run_merge() { | ||||
|         // prepare metadata | ||||
|         gguf_set_kv(ctx_out, base_model.ctx_gguf); | ||||
|         // output is forced to f16 for now | ||||
|         gguf_set_val_u32(ctx_out, "general.file_type", LLAMA_FTYPE_MOSTLY_F16); | ||||
|  | ||||
|         // check if all lora adapters have the same tensors | ||||
|         // TODO: remove this when we can support merging subset of adapters. Ref: https://github.com/ggerganov/llama.cpp/pull/8607#discussion_r1686027777 | ||||
|         static const char * err_no_subset_adapter = "Input adapters do not have the same list of tensors. This is not yet supported. Please merge the adapter one-by-one instead of merging all at once."; | ||||
|         if (adapters.size() > 1) { | ||||
|             for (size_t i = 1; i < adapters.size(); ++i) { | ||||
|                 if (adapters[0]->tensors.size() != adapters[i]->tensors.size()) { | ||||
|                     throw std::runtime_error(err_no_subset_adapter); | ||||
|                 } | ||||
|                 for (auto & it : adapters[i]->tensors) { | ||||
|                     if (adapters[0]->get_tensor(it.first) == nullptr) { | ||||
|                         throw std::runtime_error(err_no_subset_adapter); | ||||
|                     } | ||||
|                 } | ||||
|             } | ||||
|         } | ||||
|  | ||||
|         // mapping base tensor to out tensor (same shape with base, but different type) | ||||
|         std::vector<tensor_transformation> trans; | ||||
|         for (auto & it : base_model.tensors) { | ||||
|             bool t_a = true; | ||||
|             bool t_b = true; | ||||
|             for (auto & adapter : adapters) { | ||||
|                 t_a &= nullptr != adapter->get_tensor(it.first + ".lora_a"); | ||||
|                 t_b &= nullptr != adapter->get_tensor(it.first + ".lora_b"); | ||||
|             } | ||||
|             auto base_tensor = it.second; | ||||
|             if (!t_a && !t_b) { | ||||
|                 // only copy | ||||
|                 struct ggml_tensor * cpy_tensor = ggml_dup_tensor(ctx_out_ggml, base_tensor); | ||||
|                 ggml_set_name(cpy_tensor, base_tensor->name); | ||||
|                 trans.push_back({ | ||||
|                     cpy_tensor, | ||||
|                     cpy_tensor, | ||||
|                     true, | ||||
|                 }); | ||||
|                 gguf_add_tensor(ctx_out, cpy_tensor); | ||||
|             } else if (t_a && t_b) { | ||||
|                 // need merging | ||||
|                 struct ggml_tensor * out_tensor = ggml_new_tensor( | ||||
|                     ctx_out_ggml, get_out_tensor_type(base_tensor), GGML_MAX_DIMS, base_tensor->ne); | ||||
|                 ggml_set_name(out_tensor, base_tensor->name); | ||||
|                 trans.push_back({ | ||||
|                     base_tensor, | ||||
|                     out_tensor, | ||||
|                     false, | ||||
|                 }); | ||||
|                 gguf_add_tensor(ctx_out, out_tensor); | ||||
|             } else { | ||||
|                 throw std::runtime_error("tensor " + it.first + " missing either lora_a or lora_b"); | ||||
|             } | ||||
|         } | ||||
|  | ||||
|         // placeholder for the meta data | ||||
|         { | ||||
|             size_t meta_size = gguf_get_meta_size(ctx_out); | ||||
|             zeros(fout, meta_size); | ||||
|         } | ||||
|  | ||||
|         // process base model tensors | ||||
|         size_t n_merged = 0; | ||||
|         for (auto & it : trans) { | ||||
|             if (!it.is_copy) { | ||||
|                 merge_tensor(it.in, it.out); | ||||
|                 n_merged++; | ||||
|             } else { | ||||
|                 copy_tensor(it.in); | ||||
|             } | ||||
|         } | ||||
|  | ||||
|         // write output metadata | ||||
|         { | ||||
|             std::vector<uint8_t> data(gguf_get_meta_size(ctx_out)); | ||||
|             gguf_get_meta_data(ctx_out, data.data()); | ||||
|             fout.seekp(0); | ||||
|             fout.write((const char *)data.data(), data.size()); | ||||
|         } | ||||
|  | ||||
|         printf("%s : merged %zu tensors with lora adapters\n", __func__, n_merged); | ||||
|         printf("%s : wrote %zu tensors to output file\n", __func__, trans.size()); | ||||
|     } | ||||
|  | ||||
|     void copy_tensor(struct ggml_tensor * base) { | ||||
|         printf("%s :  %s [%s]\n", __func__, base->name, ggml_ne_string(base).c_str()); | ||||
|         size_t len = ggml_nbytes(base); | ||||
|         base_model.read_tensor_data(base->name, read_buf); | ||||
|         fout.write((char* )read_buf.data(), len); | ||||
|         zeros(fout, GGML_PAD(len, GGUF_DEFAULT_ALIGNMENT) - len); | ||||
|     } | ||||
|  | ||||
|     void merge_tensor(struct ggml_tensor * base, struct ggml_tensor * out) { | ||||
|         std::string name_base(base->name); | ||||
|         std::string name_lora_a = name_base + ".lora_a"; | ||||
|         std::string name_lora_b = name_base + ".lora_b"; | ||||
|  | ||||
|         printf("%s : %s [%s]\n", __func__, base->name, ggml_ne_string(base).c_str()); | ||||
|  | ||||
|         // context for input tensor | ||||
|         std::vector<struct ggml_tensor *> inp_a(adapters.size()); | ||||
|         std::vector<struct ggml_tensor *> inp_b(adapters.size()); | ||||
|         struct ggml_init_params params { | ||||
|             /*.mem_size   =*/ ggml_tensor_overhead()*(2+adapters.size()*2), | ||||
|             /*.mem_buffer =*/ NULL, | ||||
|             /*.no_alloc   =*/ true, | ||||
|         }; | ||||
|         struct ggml_context * ctx = ggml_init(params); | ||||
|  | ||||
|         // alloc tensors | ||||
|         struct ggml_tensor * inp_base = ggml_new_tensor(ctx, GGML_TYPE_F32, GGML_MAX_DIMS, base->ne); | ||||
|         for (size_t i = 0; i < adapters.size(); ++i) { | ||||
|             auto t_a = adapters[i]->get_tensor(name_lora_a); | ||||
|             auto t_b = adapters[i]->get_tensor(name_lora_b); | ||||
|             // TODO: add support for quantized lora | ||||
|             if (ggml_is_quantized(t_a->type) || ggml_is_quantized(t_b->type)) { | ||||
|                 throw std::runtime_error("quantized LoRA adapters is not supported, please retry with f16 or f32"); | ||||
|             } | ||||
|             inp_a[i] = ggml_dup_tensor(ctx, t_a); | ||||
|             inp_b[i] = ggml_dup_tensor(ctx, t_b); | ||||
|         } | ||||
|         ggml_backend_buffer_t buffer = ggml_backend_alloc_ctx_tensors(ctx, backend); | ||||
|  | ||||
|         // load base tensor to backend buffer | ||||
|         base_model.read_tensor_data(name_base, read_buf); | ||||
|         if (base->type != GGML_TYPE_F32) { | ||||
|             // optionally dequantize it | ||||
|             printf("%s :   + dequantize base tensor from %s to F32\n", __func__, ggml_type_name(base->type)); | ||||
|             auto nels = ggml_nelements(inp_base); | ||||
|             const auto * qtype = ggml_get_type_traits(base->type); | ||||
|             std::vector<uint8_t> dequant_buf(nels * sizeof(float)); | ||||
|             qtype->to_float(read_buf.data(), (float *)dequant_buf.data(), nels); | ||||
|             ggml_backend_tensor_set(inp_base, dequant_buf.data(), 0, dequant_buf.size()); | ||||
|         } else { | ||||
|             ggml_backend_tensor_set(inp_base, read_buf.data(), 0, ggml_nbytes(inp_base)); | ||||
|         } | ||||
|  | ||||
|         // load lora tensors to backend buffer | ||||
|         for (size_t i = 0; i < adapters.size(); ++i) { | ||||
|             adapters[i]->read_tensor_data(name_lora_a, read_buf); | ||||
|             ggml_backend_tensor_set(inp_a[i], read_buf.data(), 0, ggml_nbytes(inp_a[i])); | ||||
|             adapters[i]->read_tensor_data(name_lora_b, read_buf); | ||||
|             ggml_backend_tensor_set(inp_b[i], read_buf.data(), 0, ggml_nbytes(inp_b[i])); | ||||
|         } | ||||
|  | ||||
|         // build graph | ||||
|         struct ggml_cgraph * gf; | ||||
|         { | ||||
|             static size_t buf_size = ggml_tensor_overhead()*GGML_DEFAULT_GRAPH_SIZE + ggml_graph_overhead(); | ||||
|             static std::vector<uint8_t> buf(buf_size); | ||||
|             struct ggml_init_params params0 = { | ||||
|                 /*.mem_size   =*/ buf_size, | ||||
|                 /*.mem_buffer =*/ buf.data(), | ||||
|                 /*.no_alloc   =*/ true, | ||||
|             }; | ||||
|             struct ggml_context * ctx0 = ggml_init(params0); | ||||
|             gf = ggml_new_graph(ctx0); | ||||
|             struct ggml_tensor * cur = inp_base; | ||||
|             for (size_t i = 0; i < adapters.size(); ++i) { | ||||
|                 struct ggml_tensor * delta; | ||||
|                 bool is_tok_embd = string_starts_with(name_base, "token_embd"); | ||||
|                 if (is_tok_embd) { | ||||
|                     printf("%s :     detected token embeddings tensor\n", __func__); | ||||
|                     delta = ggml_mul_mat(ctx0, | ||||
|                         ggml_cast(ctx0, inp_b[i], GGML_TYPE_F32), | ||||
|                         ggml_cast(ctx0, inp_a[i], GGML_TYPE_F32)); | ||||
|                 } else { | ||||
|                     delta = ggml_mul_mat(ctx0, | ||||
|                         ggml_cont(ctx0, ggml_transpose(ctx0, ggml_cast(ctx0, inp_a[i], GGML_TYPE_F32))), | ||||
|                         ggml_cast(ctx0, inp_b[i], GGML_TYPE_F32)); | ||||
|                 } | ||||
|                 // scale | ||||
|                 const float alpha = adapters[i]->alpha; | ||||
|                 const float rank  = (float) inp_b[i]->ne[0]; | ||||
|                 const float scale = alpha ? adapters[i]->scale * alpha / rank : adapters[i]->scale; | ||||
|                 delta = ggml_scale(ctx0, delta, scale); | ||||
|                 cur = ggml_add(ctx0, delta, cur); | ||||
|                 printf("%s :   + merging from adapter[%zu] type=%s\n", __func__, i, ggml_type_name(inp_a[i]->type)); | ||||
|                 printf("%s :     input_scale=%f calculated_scale=%f rank=%d\n", __func__, adapters[i]->scale, scale, (int) inp_b[i]->ne[0]); | ||||
|             } | ||||
|             cur = ggml_cast(ctx0, cur, out->type); | ||||
|             printf("%s :   + output type is %s\n", __func__, ggml_type_name(out->type)); | ||||
|             ggml_build_forward_expand(gf, cur); | ||||
|             ggml_free(ctx0); | ||||
|         } | ||||
|  | ||||
|         // compute | ||||
|         { | ||||
|             ggml_gallocr_alloc_graph(allocr, gf); | ||||
|             ggml_backend_cpu_set_n_threads(backend, n_threads); | ||||
|             ggml_backend_graph_compute(backend, gf); | ||||
|         } | ||||
|  | ||||
|         // write data to output file | ||||
|         { | ||||
|             auto * result = ggml_graph_node(gf, -1); | ||||
|             size_t len = ggml_nbytes(result); | ||||
|             if (read_buf.size() < len) { | ||||
|                 read_buf.resize(len); | ||||
|             } | ||||
|             ggml_backend_tensor_get(result, read_buf.data(), 0, len); | ||||
|             fout.write((char* )read_buf.data(), len); | ||||
|             zeros(fout, GGML_PAD(len, GGUF_DEFAULT_ALIGNMENT) - len); | ||||
|         } | ||||
|  | ||||
|         ggml_free(ctx); | ||||
|         ggml_backend_buffer_free(buffer); | ||||
|     } | ||||
|  | ||||
|     ~lora_merge_ctx() { | ||||
|         ggml_gallocr_free(allocr); | ||||
|         ggml_backend_free(backend); | ||||
|         gguf_free(ctx_out); | ||||
|         ggml_free(ctx_out_ggml); | ||||
|     } | ||||
| }; | ||||
|  | ||||
| static void print_usage(int, char ** argv) { | ||||
|     printf("\nexample usage:\n"); | ||||
|     printf("\n  %s -m base-model.gguf --lora lora-file.gguf -o merged-model-f16.gguf\n", argv[0]); | ||||
|     printf("\nNOTE: output model is F16\n"); | ||||
|     printf("\n"); | ||||
| } | ||||
|  | ||||
| int main(int argc, char ** argv) { | ||||
|     common_params params; | ||||
|  | ||||
|     params.out_file = "ggml-lora-merged-f16.gguf"; | ||||
|  | ||||
|     if (!common_params_parse(argc, argv, params, LLAMA_EXAMPLE_EXPORT_LORA, print_usage)) { | ||||
|         return 1; | ||||
|     } | ||||
|  | ||||
|     g_verbose = (params.verbosity > 1); | ||||
|     try { | ||||
|         lora_merge_ctx ctx(params.model.path, params.lora_adapters, params.out_file, params.cpuparams.n_threads); | ||||
|         ctx.run_merge(); | ||||
|     } catch (const std::exception & err) { | ||||
|         fprintf(stderr, "%s\n", err.what()); | ||||
|         exit(EXIT_FAILURE); | ||||
|     } | ||||
|  | ||||
|     printf("done, output file is %s\n", params.out_file.c_str()); | ||||
|  | ||||
|     return 0; | ||||
| } | ||||
		Reference in New Issue
	
	Block a user
	 Diego Devesa
					Diego Devesa