Implement llama-pull tool

Complete llama-pull tool with documentation

Signed-off-by: Eric Curtin <eric.curtin@docker.com>
This commit is contained in:
Eric Curtin
2025-09-20 17:24:35 +01:00
parent 7f766929ca
commit 17ca6ed540
4 changed files with 136 additions and 0 deletions

View File

@@ -18,6 +18,7 @@ else()
add_subdirectory(gguf-split) add_subdirectory(gguf-split)
add_subdirectory(imatrix) add_subdirectory(imatrix)
add_subdirectory(llama-bench) add_subdirectory(llama-bench)
add_subdirectory(pull)
add_subdirectory(main) add_subdirectory(main)
add_subdirectory(perplexity) add_subdirectory(perplexity)
add_subdirectory(quantize) add_subdirectory(quantize)

View File

@@ -0,0 +1,8 @@
set(TARGET llama-pull)
add_executable(${TARGET} pull.cpp)
target_link_libraries(${TARGET} PRIVATE common llama ${CMAKE_THREAD_LIBS_INIT})
target_compile_features(${TARGET} PRIVATE cxx_std_17)
if(LLAMA_TOOLS_INSTALL)
install(TARGETS ${TARGET} RUNTIME)
endif()

43
tools/pull/README.md Normal file
View File

@@ -0,0 +1,43 @@
# llama-pull - Model Download Tool
A command-line tool for downloading AI models from HuggingFace and Docker Hub for use with llama.cpp.
## Usage
```bash
# Download from HuggingFace
llama-pull -hf <user>/<model>[:<quant>]
# Download from Docker Hub
llama-pull -dr [<repo>/]<model>[:<quant>]
```
## Options
- `-hf, --hf-repo REPO` - Download model from HuggingFace repository
- `-dr, --docker-repo REPO` - Download model from Docker Hub
- `--hf-token TOKEN` - HuggingFace token for private repositories
- `-h, --help` - Show help message
## Examples
```bash
# Download a HuggingFace model
llama-pull -hf microsoft/DialoGPT-medium
# Download a Docker model (ai/ repo is default)
llama-pull -dr gemma3
# Download with specific quantization
llama-pull -hf bartowski/Llama-3.2-1B-Instruct-GGUF:Q4_K_M
```
## Model Storage
Downloaded models are stored in the standard llama.cpp cache directory:
- Linux/macOS: `~/.cache/llama.cpp/`
- The models can then be used with other llama.cpp tools
## Requirements
- Built with `LLAMA_USE_CURL=ON` (default) for download functionality

84
tools/pull/pull.cpp Normal file
View File

@@ -0,0 +1,84 @@
#include "arg.h"
#include "common.h"
#include "log.h"
#include <cstdio>
#include <string>
static void print_usage(int, char ** argv) {
LOG("Usage: %s [options]\n", argv[0]);
LOG("\n");
LOG("Download models from HuggingFace or Docker Hub\n");
LOG("\n");
LOG("Options:\n");
LOG(" -h, --help show this help message and exit\n");
LOG(" -hf, -hfr, --hf-repo REPO download model from HuggingFace repository\n");
LOG(" format: <user>/<model>[:<quant>]\n");
LOG(" example: microsoft/DialoGPT-medium\n");
LOG(" -dr, --docker-repo REPO download model from Docker Hub\n");
LOG(" format: [<repo>/]<model>[:<quant>]\n");
LOG(" example: gemma3\n");
LOG(" -o, --output PATH output path for downloaded model\n");
LOG(" (default: cache directory)\n");
LOG(" --hf-token TOKEN HuggingFace token for private repositories\n");
LOG("\n");
LOG("Examples:\n");
LOG(" %s -hf microsoft/DialoGPT-medium\n", argv[0]);
LOG(" %s -dr gemma3\n", argv[0]);
LOG(" %s -hf microsoft/DialoGPT-medium -o ./my-model.gguf\n", argv[0]);
LOG("\n");
}
int main(int argc, char ** argv) {
common_params params;
// Set up argument parsing context
auto ctx = common_params_parser_init(params, LLAMA_EXAMPLE_COMMON, print_usage);
// Parse command line arguments
if (!common_params_parse(argc, argv, params, LLAMA_EXAMPLE_COMMON)) {
print_usage(argc, argv);
return 1;
}
// Check if help was requested or no download option provided
if (params.model.hf_repo.empty() && params.model.docker_repo.empty()) {
LOG_ERR("error: must specify either -hf <repo> or -dr <repo>\n");
print_usage(argc, argv);
return 1;
}
// Both cannot be specified at the same time
if (!params.model.hf_repo.empty() && !params.model.docker_repo.empty()) {
LOG_ERR("error: cannot specify both -hf and -dr options\n");
print_usage(argc, argv);
return 1;
}
// Initialize llama backend for download functionality
llama_backend_init();
LOG_INF("llama-pull: downloading model...\n");
try {
// Use the existing model handling logic which downloads the model
common_init_result llama_init = common_init_from_params(params);
if (llama_init.model != nullptr) {
LOG_INF("Model downloaded and loaded successfully to: %s\n", params.model.path.c_str());
// We only want to download, not keep the model loaded
// The download happens during common_init_from_params
} else {
LOG_ERR("Failed to download or load model\n");
return 1;
}
} catch (const std::exception & e) {
LOG_ERR("Error: %s\n", e.what());
return 1;
}
// Clean up
llama_backend_free();
return 0;
}