mirror of
https://github.com/ggml-org/llama.cpp.git
synced 2025-11-07 09:57:00 +00:00
cont : return important tensors
ggml-ci
This commit is contained in:
@@ -255,7 +255,8 @@ void llama_context::init() {
|
|||||||
// reserve pp graph first so that buffers are only allocated once
|
// reserve pp graph first so that buffers are only allocated once
|
||||||
{
|
{
|
||||||
llama_ubatch ubatch_pp = { true, n_tokens, n_tokens / n_seqs, n_seqs, &token, nullptr, nullptr, nullptr, nullptr, nullptr};
|
llama_ubatch ubatch_pp = { true, n_tokens, n_tokens / n_seqs, n_seqs, &token, nullptr, nullptr, nullptr, nullptr, nullptr};
|
||||||
auto res_pp = graph_build(ubatch_pp, true);
|
auto ctx = graph_init();
|
||||||
|
auto res_pp = graph_build(ctx, ubatch_pp, true);
|
||||||
auto & gf_pp = res_pp.gf;
|
auto & gf_pp = res_pp.gf;
|
||||||
if (!ggml_backend_sched_reserve(sched.get(), gf_pp)) {
|
if (!ggml_backend_sched_reserve(sched.get(), gf_pp)) {
|
||||||
LLAMA_LOG_ERROR("%s: failed to allocate compute pp buffers\n", __func__);
|
LLAMA_LOG_ERROR("%s: failed to allocate compute pp buffers\n", __func__);
|
||||||
@@ -269,7 +270,8 @@ void llama_context::init() {
|
|||||||
// reserve with tg graph to get the number of splits and nodes
|
// reserve with tg graph to get the number of splits and nodes
|
||||||
{
|
{
|
||||||
llama_ubatch ubatch_tg = { true, 1, 1, n_seqs, &token, nullptr, nullptr, nullptr, nullptr, nullptr};
|
llama_ubatch ubatch_tg = { true, 1, 1, n_seqs, &token, nullptr, nullptr, nullptr, nullptr, nullptr};
|
||||||
auto res_tg = graph_build(ubatch_tg, true);
|
auto ctx = graph_init();
|
||||||
|
auto res_tg = graph_build(ctx, ubatch_tg, true);
|
||||||
auto & gf_tg = res_tg.gf;
|
auto & gf_tg = res_tg.gf;
|
||||||
if (!ggml_backend_sched_reserve(sched.get(), gf_tg)) {
|
if (!ggml_backend_sched_reserve(sched.get(), gf_tg)) {
|
||||||
LLAMA_LOG_ERROR("%s: failed to allocate compute tg buffers\n", __func__);
|
LLAMA_LOG_ERROR("%s: failed to allocate compute tg buffers\n", __func__);
|
||||||
@@ -282,7 +284,8 @@ void llama_context::init() {
|
|||||||
// reserve again with pp graph to avoid ggml-alloc reallocations during inference
|
// reserve again with pp graph to avoid ggml-alloc reallocations during inference
|
||||||
{
|
{
|
||||||
llama_ubatch ubatch_pp = { true, n_tokens, n_tokens / n_seqs, n_seqs, &token, nullptr, nullptr, nullptr, nullptr, nullptr};
|
llama_ubatch ubatch_pp = { true, n_tokens, n_tokens / n_seqs, n_seqs, &token, nullptr, nullptr, nullptr, nullptr, nullptr};
|
||||||
auto res_pp = graph_build(ubatch_pp, true);
|
auto ctx = graph_init();
|
||||||
|
auto res_pp = graph_build(ctx, ubatch_pp, true);
|
||||||
auto & gf_pp = res_pp.gf;
|
auto & gf_pp = res_pp.gf;
|
||||||
if (!ggml_backend_sched_reserve(sched.get(), gf_pp)) {
|
if (!ggml_backend_sched_reserve(sched.get(), gf_pp)) {
|
||||||
LLAMA_LOG_ERROR("%s: failed to allocate compute pp buffers\n", __func__);
|
LLAMA_LOG_ERROR("%s: failed to allocate compute pp buffers\n", __func__);
|
||||||
@@ -569,6 +572,13 @@ ggml_context_ptr llama_context::graph_init() {
|
|||||||
return ggml_context_ptr { ggml_init(params) };
|
return ggml_context_ptr { ggml_init(params) };
|
||||||
}
|
}
|
||||||
|
|
||||||
|
llama_graph_result llama_context::graph_build(
|
||||||
|
ggml_context_ptr & ctx,
|
||||||
|
const llama_ubatch & ubatch,
|
||||||
|
bool worst_case) {
|
||||||
|
return model.build_graph(ctx, *this, cparams, ubatch, worst_case);
|
||||||
|
}
|
||||||
|
|
||||||
enum ggml_status llama_context::graph_compute(
|
enum ggml_status llama_context::graph_compute(
|
||||||
ggml_cgraph * graph,
|
ggml_cgraph * graph,
|
||||||
bool batched) {
|
bool batched) {
|
||||||
@@ -907,10 +917,6 @@ void llama_context::build_cb(
|
|||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
llama_graph_result llama_context::graph_build(const llama_ubatch & ubatch, bool worst_case) {
|
|
||||||
return model.build_graph(*this, cparams, ubatch, graph_init(), worst_case);
|
|
||||||
}
|
|
||||||
|
|
||||||
llama_perf_context_data llama_context::perf_get_data() const {
|
llama_perf_context_data llama_context::perf_get_data() const {
|
||||||
llama_perf_context_data data = {};
|
llama_perf_context_data data = {};
|
||||||
|
|
||||||
@@ -1831,7 +1837,8 @@ int llama_context_kv_self::decode(llama_batch & inp_batch) {
|
|||||||
llama_token token = model.vocab.token_bos(); // not actually used by llama_build_graph, but required to choose between token and embedding inputs graph
|
llama_token token = model.vocab.token_bos(); // not actually used by llama_build_graph, but required to choose between token and embedding inputs graph
|
||||||
llama_ubatch ubatch = { true, n_tokens, n_tokens / n_seqs, n_seqs, &token, nullptr, nullptr, nullptr, nullptr, nullptr};
|
llama_ubatch ubatch = { true, n_tokens, n_tokens / n_seqs, n_seqs, &token, nullptr, nullptr, nullptr, nullptr, nullptr};
|
||||||
|
|
||||||
auto res = graph_build(ubatch, true);
|
auto ctx = graph_init();
|
||||||
|
auto res = graph_build(ctx, ubatch, true);
|
||||||
|
|
||||||
// initialize scheduler with the worst-case graph
|
// initialize scheduler with the worst-case graph
|
||||||
ggml_backend_sched_reset(sched.get());
|
ggml_backend_sched_reset(sched.get());
|
||||||
@@ -1845,7 +1852,8 @@ int llama_context_kv_self::decode(llama_batch & inp_batch) {
|
|||||||
ggml_backend_sched_reset(sched.get());
|
ggml_backend_sched_reset(sched.get());
|
||||||
ggml_backend_sched_set_eval_callback(sched.get(), cparams.cb_eval, cparams.cb_eval_user_data);
|
ggml_backend_sched_set_eval_callback(sched.get(), cparams.cb_eval, cparams.cb_eval_user_data);
|
||||||
|
|
||||||
auto res = graph_build(ubatch, false);
|
auto ctx = graph_init();
|
||||||
|
auto res = graph_build(ctx, ubatch, false);
|
||||||
|
|
||||||
auto & gf = res.gf;
|
auto & gf = res.gf;
|
||||||
|
|
||||||
@@ -2092,7 +2100,8 @@ int llama_context_kv_self::encode(llama_batch & inp_batch) {
|
|||||||
ggml_backend_sched_reset(sched.get());
|
ggml_backend_sched_reset(sched.get());
|
||||||
ggml_backend_sched_set_eval_callback(sched.get(), cparams.cb_eval, cparams.cb_eval_user_data);
|
ggml_backend_sched_set_eval_callback(sched.get(), cparams.cb_eval, cparams.cb_eval_user_data);
|
||||||
|
|
||||||
auto res = graph_build(ubatch, false);
|
auto ctx = graph_init();
|
||||||
|
auto res = graph_build(ctx, ubatch, false);
|
||||||
|
|
||||||
auto & gf = res.gf;
|
auto & gf = res.gf;
|
||||||
|
|
||||||
|
|||||||
@@ -96,7 +96,10 @@ struct llama_context : public llama_graph_i {
|
|||||||
virtual ggml_context_ptr graph_init();
|
virtual ggml_context_ptr graph_init();
|
||||||
|
|
||||||
// TODO: add encode/decode graphs
|
// TODO: add encode/decode graphs
|
||||||
virtual llama_graph_result graph_build(const llama_ubatch & ubatch, bool worst_case);
|
virtual llama_graph_result graph_build(
|
||||||
|
ggml_context_ptr & ctx,
|
||||||
|
const llama_ubatch & ubatch,
|
||||||
|
bool worst_case);
|
||||||
|
|
||||||
// returns the result of ggml_backend_sched_graph_compute_async execution
|
// returns the result of ggml_backend_sched_graph_compute_async execution
|
||||||
virtual enum ggml_status graph_compute(
|
virtual enum ggml_status graph_compute(
|
||||||
|
|||||||
@@ -13,8 +13,10 @@ struct llama_ubatch;
|
|||||||
struct llama_graph_result {
|
struct llama_graph_result {
|
||||||
ggml_cgraph * gf = nullptr;
|
ggml_cgraph * gf = nullptr;
|
||||||
|
|
||||||
ggml_tensor * t_logits = nullptr;
|
// important graph nodes
|
||||||
ggml_tensor * t_embd = nullptr;
|
ggml_tensor * t_logits = nullptr;
|
||||||
|
ggml_tensor * t_embd = nullptr;
|
||||||
|
ggml_tensor * t_embd_pooled = nullptr;
|
||||||
};
|
};
|
||||||
|
|
||||||
// TODO: can become more granular in the future
|
// TODO: can become more granular in the future
|
||||||
|
|||||||
File diff suppressed because it is too large
Load Diff
@@ -370,11 +370,11 @@ struct llama_model {
|
|||||||
|
|
||||||
// TODO: add encode/decode graphs
|
// TODO: add encode/decode graphs
|
||||||
llama_graph_result build_graph(
|
llama_graph_result build_graph(
|
||||||
llama_graph_i & lgf,
|
ggml_context_ptr & ctx,
|
||||||
const llama_cparams & cparams,
|
llama_graph_i & lgf,
|
||||||
const llama_ubatch & ubatch,
|
const llama_cparams & cparams,
|
||||||
ggml_context_ptr && ctx,
|
const llama_ubatch & ubatch,
|
||||||
bool worst_case) const;
|
bool worst_case) const;
|
||||||
|
|
||||||
private:
|
private:
|
||||||
struct impl;
|
struct impl;
|
||||||
|
|||||||
Reference in New Issue
Block a user