Merge branch 'master' into compilade/imatrix-batched-chunks

This commit is contained in:
Francis Couture-Harpin
2025-04-13 12:10:02 -04:00
498 changed files with 72208 additions and 43149 deletions

View File

@@ -116,24 +116,29 @@ class Keys:
RESIDUAL_SCALE = "{arch}.residual_scale"
EMBEDDING_SCALE = "{arch}.embedding_scale"
TOKEN_SHIFT_COUNT = "{arch}.token_shift_count"
INTERLEAVE_MOE_LAYER_STEP = "{arch}.interleave_moe_layer_step"
class Attention:
HEAD_COUNT = "{arch}.attention.head_count"
HEAD_COUNT_KV = "{arch}.attention.head_count_kv"
MAX_ALIBI_BIAS = "{arch}.attention.max_alibi_bias"
CLAMP_KQV = "{arch}.attention.clamp_kqv"
KEY_LENGTH = "{arch}.attention.key_length"
VALUE_LENGTH = "{arch}.attention.value_length"
LAYERNORM_EPS = "{arch}.attention.layer_norm_epsilon"
LAYERNORM_RMS_EPS = "{arch}.attention.layer_norm_rms_epsilon"
GROUPNORM_EPS = "{arch}.attention.group_norm_epsilon"
GROUPNORM_GROUPS = "{arch}.attention.group_norm_groups"
CAUSAL = "{arch}.attention.causal"
Q_LORA_RANK = "{arch}.attention.q_lora_rank"
KV_LORA_RANK = "{arch}.attention.kv_lora_rank"
REL_BUCKETS_COUNT = "{arch}.attention.relative_buckets_count"
SLIDING_WINDOW = "{arch}.attention.sliding_window"
SCALE = "{arch}.attention.scale"
HEAD_COUNT = "{arch}.attention.head_count"
HEAD_COUNT_KV = "{arch}.attention.head_count_kv"
MAX_ALIBI_BIAS = "{arch}.attention.max_alibi_bias"
CLAMP_KQV = "{arch}.attention.clamp_kqv"
KEY_LENGTH = "{arch}.attention.key_length"
VALUE_LENGTH = "{arch}.attention.value_length"
LAYERNORM_EPS = "{arch}.attention.layer_norm_epsilon"
LAYERNORM_RMS_EPS = "{arch}.attention.layer_norm_rms_epsilon"
GROUPNORM_EPS = "{arch}.attention.group_norm_epsilon"
GROUPNORM_GROUPS = "{arch}.attention.group_norm_groups"
CAUSAL = "{arch}.attention.causal"
Q_LORA_RANK = "{arch}.attention.q_lora_rank"
KV_LORA_RANK = "{arch}.attention.kv_lora_rank"
DECAY_LORA_RANK = "{arch}.attention.decay_lora_rank"
ICLR_LORA_RANK = "{arch}.attention.iclr_lora_rank"
VALUE_RESIDUAL_MIX_LORA_RANK = "{arch}.attention.value_residual_mix_lora_rank"
GATE_LORA_RANK = "{arch}.attention.gate_lora_rank"
REL_BUCKETS_COUNT = "{arch}.attention.relative_buckets_count"
SLIDING_WINDOW = "{arch}.attention.sliding_window"
SCALE = "{arch}.attention.scale"
class Rope:
DIMENSION_COUNT = "{arch}.rope.dimension_count"
@@ -230,6 +235,7 @@ class GGUFType:
class MODEL_ARCH(IntEnum):
LLAMA = auto()
LLAMA4 = auto()
DECI = auto()
FALCON = auto()
BAICHUAN = auto()
@@ -249,6 +255,8 @@ class MODEL_ARCH(IntEnum):
QWEN2 = auto()
QWEN2MOE = auto()
QWEN2VL = auto()
QWEN3 = auto()
QWEN3MOE = auto()
PHI2 = auto()
PHI3 = auto()
PHIMOE = auto()
@@ -260,9 +268,12 @@ class MODEL_ARCH(IntEnum):
MINICPM3 = auto()
GEMMA = auto()
GEMMA2 = auto()
GEMMA3 = auto()
STARCODER2 = auto()
RWKV6 = auto()
RWKV6QWEN2 = auto()
RWKV7 = auto()
ARWKV7 = auto()
MAMBA = auto()
XVERSE = auto()
COMMAND_R = auto()
@@ -276,6 +287,7 @@ class MODEL_ARCH(IntEnum):
DEEPSEEK = auto()
DEEPSEEK2 = auto()
CHATGLM = auto()
GLM4 = auto()
BITNET = auto()
T5 = auto()
T5ENCODER = auto()
@@ -286,6 +298,8 @@ class MODEL_ARCH(IntEnum):
GRANITE_MOE = auto()
CHAMELEON = auto()
WAVTOKENIZER_DEC = auto()
PLM = auto()
BAILINGMOE = auto()
class MODEL_TENSOR(IntEnum):
@@ -335,8 +349,20 @@ class MODEL_TENSOR(IntEnum):
SSM_A = auto()
SSM_D = auto()
SSM_OUT = auto()
TIME_MIX_W0 = auto()
TIME_MIX_W1 = auto()
TIME_MIX_W2 = auto()
TIME_MIX_A0 = auto()
TIME_MIX_A1 = auto()
TIME_MIX_A2 = auto()
TIME_MIX_V0 = auto()
TIME_MIX_V1 = auto()
TIME_MIX_V2 = auto()
TIME_MIX_G1 = auto()
TIME_MIX_G2 = auto()
TIME_MIX_K_K = auto()
TIME_MIX_K_A = auto()
TIME_MIX_R_K = auto()
TIME_MIX_LERP_X = auto()
TIME_MIX_LERP_K = auto()
TIME_MIX_LERP_V = auto()
@@ -417,6 +443,7 @@ class MODEL_TENSOR(IntEnum):
MODEL_ARCH_NAMES: dict[MODEL_ARCH, str] = {
MODEL_ARCH.LLAMA: "llama",
MODEL_ARCH.LLAMA4: "llama4",
MODEL_ARCH.DECI: "deci",
MODEL_ARCH.FALCON: "falcon",
MODEL_ARCH.BAICHUAN: "baichuan",
@@ -436,6 +463,8 @@ MODEL_ARCH_NAMES: dict[MODEL_ARCH, str] = {
MODEL_ARCH.QWEN2: "qwen2",
MODEL_ARCH.QWEN2MOE: "qwen2moe",
MODEL_ARCH.QWEN2VL: "qwen2vl",
MODEL_ARCH.QWEN3: "qwen3",
MODEL_ARCH.QWEN3MOE: "qwen3moe",
MODEL_ARCH.PHI2: "phi2",
MODEL_ARCH.PHI3: "phi3",
MODEL_ARCH.PHIMOE: "phimoe",
@@ -447,9 +476,12 @@ MODEL_ARCH_NAMES: dict[MODEL_ARCH, str] = {
MODEL_ARCH.MINICPM3: "minicpm3",
MODEL_ARCH.GEMMA: "gemma",
MODEL_ARCH.GEMMA2: "gemma2",
MODEL_ARCH.GEMMA3: "gemma3",
MODEL_ARCH.STARCODER2: "starcoder2",
MODEL_ARCH.RWKV6: "rwkv6",
MODEL_ARCH.RWKV6QWEN2: "rwkv6qwen2",
MODEL_ARCH.RWKV7: "rwkv7",
MODEL_ARCH.ARWKV7: "arwkv7",
MODEL_ARCH.MAMBA: "mamba",
MODEL_ARCH.XVERSE: "xverse",
MODEL_ARCH.COMMAND_R: "command-r",
@@ -463,6 +495,7 @@ MODEL_ARCH_NAMES: dict[MODEL_ARCH, str] = {
MODEL_ARCH.DEEPSEEK: "deepseek",
MODEL_ARCH.DEEPSEEK2: "deepseek2",
MODEL_ARCH.CHATGLM: "chatglm",
MODEL_ARCH.GLM4: "glm4",
MODEL_ARCH.BITNET: "bitnet",
MODEL_ARCH.T5: "t5",
MODEL_ARCH.T5ENCODER: "t5encoder",
@@ -473,6 +506,8 @@ MODEL_ARCH_NAMES: dict[MODEL_ARCH, str] = {
MODEL_ARCH.GRANITE_MOE: "granitemoe",
MODEL_ARCH.CHAMELEON: "chameleon",
MODEL_ARCH.WAVTOKENIZER_DEC: "wavtokenizer-dec",
MODEL_ARCH.PLM: "plm",
MODEL_ARCH.BAILINGMOE: "bailingmoe",
}
TENSOR_NAMES: dict[MODEL_TENSOR, str] = {
@@ -522,8 +557,20 @@ TENSOR_NAMES: dict[MODEL_TENSOR, str] = {
MODEL_TENSOR.SSM_A: "blk.{bid}.ssm_a",
MODEL_TENSOR.SSM_D: "blk.{bid}.ssm_d",
MODEL_TENSOR.SSM_OUT: "blk.{bid}.ssm_out",
MODEL_TENSOR.TIME_MIX_W0: "blk.{bid}.time_mix_w0",
MODEL_TENSOR.TIME_MIX_W1: "blk.{bid}.time_mix_w1",
MODEL_TENSOR.TIME_MIX_W2: "blk.{bid}.time_mix_w2",
MODEL_TENSOR.TIME_MIX_A0: "blk.{bid}.time_mix_a0",
MODEL_TENSOR.TIME_MIX_A1: "blk.{bid}.time_mix_a1",
MODEL_TENSOR.TIME_MIX_A2: "blk.{bid}.time_mix_a2",
MODEL_TENSOR.TIME_MIX_V0: "blk.{bid}.time_mix_v0",
MODEL_TENSOR.TIME_MIX_V1: "blk.{bid}.time_mix_v1",
MODEL_TENSOR.TIME_MIX_V2: "blk.{bid}.time_mix_v2",
MODEL_TENSOR.TIME_MIX_G1: "blk.{bid}.time_mix_g1",
MODEL_TENSOR.TIME_MIX_G2: "blk.{bid}.time_mix_g2",
MODEL_TENSOR.TIME_MIX_K_K: "blk.{bid}.time_mix_k_k",
MODEL_TENSOR.TIME_MIX_K_A: "blk.{bid}.time_mix_k_a",
MODEL_TENSOR.TIME_MIX_R_K: "blk.{bid}.time_mix_r_k",
MODEL_TENSOR.TIME_MIX_LERP_X: "blk.{bid}.time_mix_lerp_x",
MODEL_TENSOR.TIME_MIX_LERP_K: "blk.{bid}.time_mix_lerp_k",
MODEL_TENSOR.TIME_MIX_LERP_V: "blk.{bid}.time_mix_lerp_v",
@@ -623,6 +670,29 @@ MODEL_TENSORS: dict[MODEL_ARCH, list[MODEL_TENSOR]] = {
MODEL_TENSOR.FFN_DOWN_EXP,
MODEL_TENSOR.FFN_UP_EXP,
],
MODEL_ARCH.LLAMA4: [
MODEL_TENSOR.TOKEN_EMBD,
MODEL_TENSOR.OUTPUT_NORM,
MODEL_TENSOR.OUTPUT,
MODEL_TENSOR.ROPE_FREQS,
MODEL_TENSOR.ATTN_NORM,
MODEL_TENSOR.ATTN_Q,
MODEL_TENSOR.ATTN_K,
MODEL_TENSOR.ATTN_V,
MODEL_TENSOR.ATTN_OUT,
MODEL_TENSOR.ATTN_ROT_EMBD,
MODEL_TENSOR.FFN_GATE_INP,
MODEL_TENSOR.FFN_NORM,
MODEL_TENSOR.FFN_GATE,
MODEL_TENSOR.FFN_DOWN,
MODEL_TENSOR.FFN_UP,
MODEL_TENSOR.FFN_GATE_EXP,
MODEL_TENSOR.FFN_DOWN_EXP,
MODEL_TENSOR.FFN_UP_EXP,
MODEL_TENSOR.FFN_GATE_SHEXP,
MODEL_TENSOR.FFN_DOWN_SHEXP,
MODEL_TENSOR.FFN_UP_SHEXP,
],
MODEL_ARCH.DECI: [
MODEL_TENSOR.TOKEN_EMBD,
MODEL_TENSOR.OUTPUT_NORM,
@@ -896,6 +966,40 @@ MODEL_TENSORS: dict[MODEL_ARCH, list[MODEL_TENSOR]] = {
MODEL_TENSOR.FFN_DOWN_SHEXP,
MODEL_TENSOR.FFN_UP_SHEXP,
],
MODEL_ARCH.QWEN3: [
MODEL_TENSOR.TOKEN_EMBD,
MODEL_TENSOR.OUTPUT_NORM,
MODEL_TENSOR.OUTPUT,
MODEL_TENSOR.ROPE_FREQS,
MODEL_TENSOR.ATTN_NORM,
MODEL_TENSOR.ATTN_Q,
MODEL_TENSOR.ATTN_Q_NORM,
MODEL_TENSOR.ATTN_K,
MODEL_TENSOR.ATTN_K_NORM,
MODEL_TENSOR.ATTN_V,
MODEL_TENSOR.ATTN_OUT,
MODEL_TENSOR.FFN_NORM,
MODEL_TENSOR.FFN_GATE,
MODEL_TENSOR.FFN_DOWN,
MODEL_TENSOR.FFN_UP,
],
MODEL_ARCH.QWEN3MOE: [
MODEL_TENSOR.TOKEN_EMBD,
MODEL_TENSOR.OUTPUT_NORM,
MODEL_TENSOR.OUTPUT,
MODEL_TENSOR.ATTN_NORM,
MODEL_TENSOR.ATTN_Q,
MODEL_TENSOR.ATTN_Q_NORM,
MODEL_TENSOR.ATTN_K,
MODEL_TENSOR.ATTN_K_NORM,
MODEL_TENSOR.ATTN_V,
MODEL_TENSOR.ATTN_OUT,
MODEL_TENSOR.FFN_NORM,
MODEL_TENSOR.FFN_GATE_INP,
MODEL_TENSOR.FFN_GATE_EXP,
MODEL_TENSOR.FFN_DOWN_EXP,
MODEL_TENSOR.FFN_UP_EXP,
],
MODEL_ARCH.PLAMO: [
MODEL_TENSOR.TOKEN_EMBD,
MODEL_TENSOR.OUTPUT_NORM,
@@ -1084,6 +1188,24 @@ MODEL_TENSORS: dict[MODEL_ARCH, list[MODEL_TENSOR]] = {
MODEL_TENSOR.FFN_PRE_NORM,
MODEL_TENSOR.FFN_POST_NORM,
],
MODEL_ARCH.GEMMA3: [
MODEL_TENSOR.TOKEN_EMBD,
MODEL_TENSOR.OUTPUT,
MODEL_TENSOR.OUTPUT_NORM,
MODEL_TENSOR.ATTN_Q,
MODEL_TENSOR.ATTN_Q_NORM,
MODEL_TENSOR.ATTN_K,
MODEL_TENSOR.ATTN_K_NORM,
MODEL_TENSOR.ATTN_V,
MODEL_TENSOR.ATTN_OUT,
MODEL_TENSOR.FFN_GATE,
MODEL_TENSOR.FFN_DOWN,
MODEL_TENSOR.FFN_UP,
MODEL_TENSOR.ATTN_NORM,
MODEL_TENSOR.ATTN_POST_NORM,
MODEL_TENSOR.FFN_PRE_NORM,
MODEL_TENSOR.FFN_POST_NORM,
],
MODEL_ARCH.STARCODER2: [
MODEL_TENSOR.TOKEN_EMBD,
MODEL_TENSOR.OUTPUT_NORM,
@@ -1160,6 +1282,68 @@ MODEL_TENSORS: dict[MODEL_ARCH, list[MODEL_TENSOR]] = {
MODEL_TENSOR.FFN_DOWN,
MODEL_TENSOR.FFN_UP,
],
MODEL_ARCH.RWKV7: [
MODEL_TENSOR.TOKEN_EMBD,
MODEL_TENSOR.TOKEN_EMBD_NORM,
MODEL_TENSOR.OUTPUT_NORM,
MODEL_TENSOR.OUTPUT,
MODEL_TENSOR.ATTN_NORM,
MODEL_TENSOR.ATTN_NORM_2,
MODEL_TENSOR.TIME_MIX_LERP_FUSED,
MODEL_TENSOR.TIME_MIX_W0,
MODEL_TENSOR.TIME_MIX_W1,
MODEL_TENSOR.TIME_MIX_W2,
MODEL_TENSOR.TIME_MIX_A0,
MODEL_TENSOR.TIME_MIX_A1,
MODEL_TENSOR.TIME_MIX_A2,
MODEL_TENSOR.TIME_MIX_V0,
MODEL_TENSOR.TIME_MIX_V1,
MODEL_TENSOR.TIME_MIX_V2,
MODEL_TENSOR.TIME_MIX_G1,
MODEL_TENSOR.TIME_MIX_G2,
MODEL_TENSOR.TIME_MIX_K_K,
MODEL_TENSOR.TIME_MIX_K_A,
MODEL_TENSOR.TIME_MIX_R_K,
MODEL_TENSOR.TIME_MIX_KEY,
MODEL_TENSOR.TIME_MIX_VALUE,
MODEL_TENSOR.TIME_MIX_RECEPTANCE,
MODEL_TENSOR.TIME_MIX_LN,
MODEL_TENSOR.TIME_MIX_OUTPUT,
MODEL_TENSOR.CHANNEL_MIX_LERP_K,
MODEL_TENSOR.CHANNEL_MIX_KEY,
MODEL_TENSOR.CHANNEL_MIX_VALUE,
],
MODEL_ARCH.ARWKV7: [
MODEL_TENSOR.TOKEN_EMBD,
MODEL_TENSOR.TOKEN_EMBD_NORM,
MODEL_TENSOR.OUTPUT_NORM,
MODEL_TENSOR.OUTPUT,
MODEL_TENSOR.ATTN_NORM,
MODEL_TENSOR.TIME_MIX_LERP_FUSED,
MODEL_TENSOR.TIME_MIX_W0,
MODEL_TENSOR.TIME_MIX_W1,
MODEL_TENSOR.TIME_MIX_W2,
MODEL_TENSOR.TIME_MIX_A0,
MODEL_TENSOR.TIME_MIX_A1,
MODEL_TENSOR.TIME_MIX_A2,
MODEL_TENSOR.TIME_MIX_V0,
MODEL_TENSOR.TIME_MIX_V1,
MODEL_TENSOR.TIME_MIX_V2,
MODEL_TENSOR.TIME_MIX_G1,
MODEL_TENSOR.TIME_MIX_G2,
MODEL_TENSOR.TIME_MIX_K_K,
MODEL_TENSOR.TIME_MIX_K_A,
MODEL_TENSOR.TIME_MIX_R_K,
MODEL_TENSOR.TIME_MIX_KEY,
MODEL_TENSOR.TIME_MIX_VALUE,
MODEL_TENSOR.TIME_MIX_RECEPTANCE,
MODEL_TENSOR.TIME_MIX_LN,
MODEL_TENSOR.TIME_MIX_OUTPUT,
MODEL_TENSOR.FFN_NORM,
MODEL_TENSOR.FFN_GATE,
MODEL_TENSOR.FFN_DOWN,
MODEL_TENSOR.FFN_UP,
],
MODEL_ARCH.MAMBA: [
MODEL_TENSOR.TOKEN_EMBD,
MODEL_TENSOR.OUTPUT_NORM,
@@ -1357,6 +1541,20 @@ MODEL_TENSORS: dict[MODEL_ARCH, list[MODEL_TENSOR]] = {
MODEL_TENSOR.FFN_UP_SHEXP,
MODEL_TENSOR.FFN_EXP_PROBS_B,
],
MODEL_ARCH.PLM: [
MODEL_TENSOR.TOKEN_EMBD,
MODEL_TENSOR.OUTPUT,
MODEL_TENSOR.OUTPUT_NORM,
MODEL_TENSOR.ATTN_NORM,
MODEL_TENSOR.ATTN_Q,
MODEL_TENSOR.ATTN_KV_A_MQA,
MODEL_TENSOR.ATTN_KV_A_NORM,
MODEL_TENSOR.ATTN_KV_B,
MODEL_TENSOR.ATTN_OUT,
MODEL_TENSOR.FFN_NORM,
MODEL_TENSOR.FFN_UP,
MODEL_TENSOR.FFN_DOWN,
],
MODEL_ARCH.CHATGLM : [
MODEL_TENSOR.TOKEN_EMBD,
MODEL_TENSOR.ROPE_FREQS,
@@ -1372,6 +1570,23 @@ MODEL_TENSORS: dict[MODEL_ARCH, list[MODEL_TENSOR]] = {
MODEL_TENSOR.FFN_DOWN,
MODEL_TENSOR.FFN_UP,
],
MODEL_ARCH.GLM4 : [
MODEL_TENSOR.TOKEN_EMBD,
MODEL_TENSOR.ROPE_FREQS,
MODEL_TENSOR.OUTPUT_NORM,
MODEL_TENSOR.OUTPUT,
MODEL_TENSOR.ATTN_NORM,
MODEL_TENSOR.ATTN_QKV,
MODEL_TENSOR.ATTN_Q,
MODEL_TENSOR.ATTN_K,
MODEL_TENSOR.ATTN_V,
MODEL_TENSOR.ATTN_OUT,
MODEL_TENSOR.FFN_NORM,
MODEL_TENSOR.FFN_DOWN,
MODEL_TENSOR.FFN_UP,
MODEL_TENSOR.ATTN_POST_NORM,
MODEL_TENSOR.FFN_POST_NORM,
],
MODEL_ARCH.BITNET: [
MODEL_TENSOR.ATTN_Q,
MODEL_TENSOR.ATTN_K,
@@ -1544,6 +1759,25 @@ MODEL_TENSORS: dict[MODEL_ARCH, list[MODEL_TENSOR]] = {
MODEL_TENSOR.POSNET_ATTN_V,
MODEL_TENSOR.POSNET_ATTN_OUT,
],
MODEL_ARCH.BAILINGMOE: [
MODEL_TENSOR.TOKEN_EMBD,
MODEL_TENSOR.OUTPUT_NORM,
MODEL_TENSOR.OUTPUT,
MODEL_TENSOR.ROPE_FREQS,
MODEL_TENSOR.ATTN_NORM,
MODEL_TENSOR.ATTN_Q,
MODEL_TENSOR.ATTN_K,
MODEL_TENSOR.ATTN_V,
MODEL_TENSOR.ATTN_OUT,
MODEL_TENSOR.FFN_GATE_INP,
MODEL_TENSOR.FFN_NORM,
MODEL_TENSOR.FFN_GATE_EXP,
MODEL_TENSOR.FFN_DOWN_EXP,
MODEL_TENSOR.FFN_UP_EXP,
MODEL_TENSOR.FFN_GATE_SHEXP,
MODEL_TENSOR.FFN_DOWN_SHEXP,
MODEL_TENSOR.FFN_UP_SHEXP,
],
# TODO
}
@@ -1596,6 +1830,9 @@ MODEL_TENSOR_SKIP: dict[MODEL_ARCH, list[MODEL_TENSOR]] = {
MODEL_TENSOR.ROPE_FREQS,
MODEL_TENSOR.ATTN_ROT_EMBD,
],
MODEL_ARCH.BAILINGMOE: [
MODEL_TENSOR.ROPE_FREQS,
],
}
#