mirror of
https://github.com/ggml-org/llama.cpp.git
synced 2025-10-29 08:41:22 +00:00
cuda : add softcap fusion (#14907)
This commit is contained in:
@@ -33,6 +33,7 @@
|
||||
#include "ggml-cuda/rope.cuh"
|
||||
#include "ggml-cuda/roll.cuh"
|
||||
#include "ggml-cuda/scale.cuh"
|
||||
#include "ggml-cuda/softcap.cuh"
|
||||
#include "ggml-cuda/softmax.cuh"
|
||||
#include "ggml-cuda/ssm-conv.cuh"
|
||||
#include "ggml-cuda/ssm-scan.cuh"
|
||||
@@ -2770,7 +2771,12 @@ static void update_cuda_graph_executable(ggml_backend_cuda_context * cuda_ctx) {
|
||||
}
|
||||
#endif
|
||||
|
||||
static bool ggml_cuda_can_fuse(const struct ggml_cgraph * cgraph, int node_idx, std::initializer_list<enum ggml_op> ops) {
|
||||
static bool ggml_cuda_can_fuse(const struct ggml_cgraph * cgraph, int node_idx, std::initializer_list<enum ggml_op> ops, std::initializer_list<enum ggml_unary_op> unary_ops) {
|
||||
#ifndef NDEBUG
|
||||
const size_t num_unary = std::count(ops.begin(), ops.end(), GGML_OP_UNARY);
|
||||
GGML_ASSERT(unary_ops.size() == num_unary);
|
||||
#endif
|
||||
|
||||
if (!ggml_can_fuse(cgraph, node_idx, ops)) {
|
||||
return false;
|
||||
}
|
||||
@@ -2798,9 +2804,32 @@ static bool ggml_cuda_can_fuse(const struct ggml_cgraph * cgraph, int node_idx,
|
||||
if (!ggml_is_contiguous_rows(mul->src[0]) || !ggml_is_contiguous_rows(mul->src[1])) {
|
||||
return false;
|
||||
}
|
||||
|
||||
return true;
|
||||
}
|
||||
|
||||
return true;
|
||||
if (ops.size() == 3 && ops.begin()[0] == GGML_OP_SCALE && ops.begin()[1] == GGML_OP_UNARY && ops.begin()[2] == GGML_OP_SCALE
|
||||
&& unary_ops.size() == 1 && unary_ops.begin()[0] == GGML_UNARY_OP_TANH) {
|
||||
const ggml_tensor *scale = cgraph->nodes[node_idx];
|
||||
const ggml_tensor *tanh = cgraph->nodes[node_idx+1];
|
||||
const ggml_tensor *scale2 = cgraph->nodes[node_idx+2];
|
||||
|
||||
GGML_ASSERT(scale->src[0]->type == GGML_TYPE_F32);
|
||||
GGML_ASSERT(scale->type == GGML_TYPE_F32);
|
||||
|
||||
if (ggml_get_unary_op(tanh) != GGML_UNARY_OP_TANH) {
|
||||
return false;
|
||||
}
|
||||
|
||||
// Check for bias
|
||||
if (ggml_get_op_params_f32(scale, 1) != 0.0f || ggml_get_op_params_f32(scale2, 1) != 0.0f) {
|
||||
return false;
|
||||
}
|
||||
|
||||
return true;
|
||||
}
|
||||
|
||||
return false;
|
||||
}
|
||||
|
||||
static void evaluate_and_capture_cuda_graph(ggml_backend_cuda_context * cuda_ctx, ggml_cgraph * cgraph,
|
||||
@@ -2821,10 +2850,18 @@ static void evaluate_and_capture_cuda_graph(ggml_backend_cuda_context * cuda_ctx
|
||||
}
|
||||
|
||||
static bool disable_fusion = (getenv("GGML_CUDA_DISABLE_FUSION") != nullptr);
|
||||
if (!disable_fusion && ggml_cuda_can_fuse(cgraph, i, { GGML_OP_RMS_NORM, GGML_OP_MUL })) {
|
||||
ggml_cuda_op_rms_norm_fused(*cuda_ctx, node, cgraph->nodes[i+1]);
|
||||
i++;
|
||||
continue;
|
||||
if (!disable_fusion) {
|
||||
if (ggml_cuda_can_fuse(cgraph, i, { GGML_OP_RMS_NORM, GGML_OP_MUL }, {})) {
|
||||
ggml_cuda_op_rms_norm_fused(*cuda_ctx, node, cgraph->nodes[i+1]);
|
||||
i++;
|
||||
continue;
|
||||
}
|
||||
|
||||
if (ggml_cuda_can_fuse(cgraph, i, { GGML_OP_SCALE, GGML_OP_UNARY, GGML_OP_SCALE }, { GGML_UNARY_OP_TANH })) {
|
||||
i += 2;
|
||||
ggml_cuda_op_softcap(*cuda_ctx, cgraph->nodes[i], node);
|
||||
continue;
|
||||
}
|
||||
}
|
||||
#ifndef NDEBUG
|
||||
assert(node->buffer->buft == ggml_backend_cuda_buffer_type(cuda_ctx->device));
|
||||
|
||||
Reference in New Issue
Block a user